The Highly Scalable Iterative Solver Library PHIST

Achim Basermann, Melven Röhrig-Zöllner and Jonas Thies
German Aerospace Center (DLR)
Simulation and Software Technology
Linder Höhe, Cologne, Germany
DLR
German Aerospace Center

- Research Institution
- Space Agency
- Project Management Agency
DLR Locations and Employees

Approx. 8000 employees across 33 institutes and facilities at 16 sites.

DLR Institute Simulation and Software Technology
Scientific Themes and Working Groups

Departments
- Distributed Systems and Component Software
- Software for Space Systems and Interactive Visualization

Working Groups
- Distributed Software Systems
- High-Performance Computing
- Software Engineering
- Embedded Systems
- Modeling and Simulation
- Scientific Visualization
- 3D Interaction
Survey

- Motivation for extreme scale computing
- The DFG project ESSEX
- The ESSEX software infrastructure
- The iterative solver library PHIST
 - Methods
 - Performance
- Conclusions
Hypothetical Exascale System

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flops – peak (PF)</td>
<td>997</td>
</tr>
<tr>
<td>Microprocessors</td>
<td>223,872</td>
</tr>
<tr>
<td>Cores/microprocessor</td>
<td>742</td>
</tr>
<tr>
<td>Cache (TB)</td>
<td>37.2</td>
</tr>
<tr>
<td>DRAM (PB)</td>
<td>3.58</td>
</tr>
<tr>
<td>Total power (MW)</td>
<td>67.7</td>
</tr>
<tr>
<td>Memory bandwidth / Flops</td>
<td>0.0025</td>
</tr>
<tr>
<td>Network bandwidth / Flops</td>
<td>0.0008</td>
</tr>
</tbody>
</table>

“Aggressive Strawman” (2007)

DARPA (The Defense Advanced Research Projects Agency of the U.S)

170 million cores!
Today´s Workstations are Hundredfold Parallel

- Example: Intel® Haswell architecture
 - 1-2 CPU sockets
 - with 18 cores each
 - Hyperthreading, 2 threads/core
 - 8 operations performed concurrently (SIMD, FMA)

- GPUs offer parallelism with ten thousands of asynchronous threads.

Conclusion: Highly scalable software is not only relevant for high-end computing, but has many applications on common hardware available for everyone.
Accelerator Hardware makes HPC Main Stream

- High parallelism and flop rates
- Expert know-how for porting necessary (e.g. CUDA knowledge)
- Higher memory bandwidth
- New bottleneck CPU→device

- Common representatives:

Nvidia® GPUs

Intel® Xeon Phi
Software Challenges

Problems:

• Only a few algorithms are designed for extreme parallelism.
• Applications software is as a rule incrementally adapted to new technologies.

Extreme parallelism requires:

• Extremely scalable algorithms
• New concepts for
 • fault tolerance
 • programming models
 • frameworks for modelling and simulation
• Focus on suitable software engineering methods for parallel codes
 • New test methods
 • New tools for development and analysis
The DFG Project ESSEX

DFG programme

Software for Exascale Computing

Project ESSEX

Equipping Sparse Solvers for the Exascale

Period: 2013-2015

Extended to 2018

International contacts

- Sandia (Trilinos project)
- Tennessee (Dongarra)
- Japan: Tsukuba, Tokyo
- The Netherlands: Groningen, Utrecht

Participating universities

- RRZE Erlangen, Computer Science (Prof. Wellein, Hager)
- Wuppertal, Numerical Analysis (Prof. Lang)
- Greifswald, Physics (Prof. Fehske)

ESSEX develops open-source software.
Quantum physics/information applications

Large, Sparse

\[i\hbar \frac{\partial}{\partial t} \psi(\vec{r}, t) = H \psi(\vec{r}, t) \]

and beyond....

\[H \mathbf{x} = \lambda \mathbf{x} \]

“Few” (1,...,100s) of eigenpairs

“Bulk” (100s,...,1000s) eigenpairs

\[\{\lambda_1, \lambda_2, ..., \ldots, \ldots, \ldots, \lambda_k, \ldots, \ldots, \ldots, \lambda_{n-1}, \lambda_n\} \]

Good approximation to full spectrum (e.g. Density of States)

→ Sparse eigenvalue solvers of broad applicability
Enabling Extreme Parallelism through Software Codesign

Fault Tolerance

Applications

Computational Algorithms

Building Blocks

Numerical Reliability

Scalability
Programming Models for Heterogeneous HPC Systems

- Flat MPI + off-loading
- Runtime (e.g. MAGMA, OmpSs)
 - Dynamic scheduling of small tasks → good load balancing
- Kokkos (Trilinos)
 - High level of abstraction (C++11)
- MPI+X strategy in ESSEX
 - X: OpenMP, CUDA, SIMD Intrinsics, e.g. AVX
 - Tasking for bigger asynchronous functions → functional parallelism
 - Experts implement the kernels required.
The ESSEX Software Infrastructure
The ESSEX Software Infrastructure: Test-Driven Algorithm Development

- new algorithm
- implement template
- missing kernels
- add unit tests
- optimize numerics
- add robust kernels
- implement optimized version
- evaluate overall performance
- application

- established kernel library
- optimized kernel library
Optimized ESSEX Kernel Library

General, Hybrid, and Optimized Sparse Toolkit

- MPI + OpenMP + SIMD + CUDA
- Sparse matrix-(block-)vector multiplication
- Dense block-vector operations
- Task-queue for functional parallelism
- Asynchronous checkpoint-restart

Status: beta version, suitable for experienced HPC C programmers

http://bitbucket.org/essex/ghost

BSD License
The Iterative Solver Library PHIST

PHIST

Pipelined Hybrid parallel Iterative Solver Toolkit

- Iterative solvers for sparse matrices
 - Eigenproblems: Jacobi-Davidson, FEAST
 - Systems of linear equations: GMRES, MINRES, CARP-CG
- Provides some abstraction from data layout, process management, tasking etc.
- Adapts algorithms to use block operations
- Implements asynchronous and fault-tolerant solvers
- Simple functional interface (C, Fortran, Python)
- Systematically tests kernel libraries for correctness and performance
- Various possibilities for integration into applications

Status: beta version with extensive test framework

http://bitbucket.org/essex/phist

BSD License
Integration of PHIST into Applications

Selection of kernel library

- **Required flexibility**
 - low
 - high

- **GHoST**
 - No easy access to matrix elements

- **PHIST**
 - Only CPU
 - F'03+OpenMP
 - CRS format

- **Trilinos**
 - Various arch.
 - Large C++ code base

- **Own data structures**
 - Adapter ca 1000 lines of code

- **Hardware awareness**
 - high
 - low
Interoperability of PHIST and Trilinos

ESSEX project

PHIST

C Wrapper

Anasazi (eigenproblems)

Belos (lin. eq. syst.)

PHIST builtin

"Can Use"

Epetra

Tpetra

Iterative solvers

Basic operations
Iterative Solvers from PHIST: Jacobi-Davidson QR method (Fokkema, 1998)

Sketch of the algorithm

1: while not converged do
2: Project the problem to a small subspace
3: Solve the small eigenvalue problem
4: Calculate an approximation and its residual
5: Approximately solve the correction equation
6: Orthogonalize the new direction
7: Enlarge the subspace
8: end while
Iterative Solvers from PHIST: Block JDQR method

Idea

- Calculate corrections for n_b eigenvalues at once
- Block correction equation with $\tilde{Q} = (Q \quad \tilde{v}_1 \quad \ldots \quad \tilde{v}_{n_b})$:
 \[(I - \tilde{Q} \tilde{Q}^T)(A - \tilde{\lambda}_i I)(I - \tilde{Q} \tilde{Q}^T)w_{k+i} = -r_i \quad i = 1, \ldots, n_b\]

→ Approximately solve n_b linear systems at once
- Provides new directions $w_{k+1}, \ldots, w_{k+n_b}$ for the subspace iteration

Numerical properties

- More robust
- Usually needs more operations
Iterative Solvers from PHIST: Complete Block JDQR method

Sketch of the complete algorithm

1: Setup initial subspace
2: while not converged do
3: Project the problem to a small subspace
4: Solve the small eigenvalue problem
5: Calculate an n_b approximations and their residual
6: Lock converged eigenvalues
7: Shrink subspace if required (thick restart)
8: Approximately solve the n_b correction equations
9: Block-Orthogonalize the new directions (using TSQR)
10: Enlarge the subspace
11: end while
Block JDQR method: Required Linear Algebra Operations

Sparse matrix-multiple-vector multiplication (spMMVM)

- Large distributed sparse matrix A in SELL-C-σ format
- Distributed blocks of vectors $X, Y \in \mathbb{R}^{n \times n_b}$
- Shifted spMMVM: $y_i \leftarrow \left(A - \tilde{\lambda}_i I\right)x_i, \quad i = 1, \ldots, n_b$

Block vector operations

- Different types of operations:

<table>
<thead>
<tr>
<th></th>
<th>local</th>
<th>all-reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLAS 1</td>
<td>$Y \leftarrow X + Y$</td>
<td>$|x_i|, i = 1, \ldots, n_b$</td>
</tr>
<tr>
<td>BLAS 3</td>
<td>$Y \leftarrow XM$</td>
<td>$M \leftarrow X^T Y$</td>
</tr>
</tbody>
</table>

- Redundantly stored small matrices $M \in \mathbb{R}^{n_b \times n_b}$
Block JDQR method: Block Vector Operations

Background

- All operations are memory bound.
 (also the GEMM, as all matrices are very tall and skinny)

Results of blocking

- Faster BLAS 3 operations (e.g. $Y \leftarrow XM$)
- Message aggregation for all-reductions (e.g. $M \leftarrow X^T Y$
 → Improved performance of some operations
Block JDQR method: Result of Correction Kernel Optimization

10-core Intel Ivy Bridge CPU; CRS format; matrix: 10^7 rows; $1.5 \cdot 10^8$ nonzeros; 120 correction operations

![Chart showing runtime comparison between GHOST and Tpetra]

GHOST, row-major blockvectors

Tpetra, col.-major blockvectors
Block JDQR method: Overall Speedup through Blocking
Node: 2x10-core Intel Ivy Bridge CPU; SELL-C-σ format; blocked preconditioning; residual reduction: 10^{-8}

20 left-most eigenpairs of $\text{Spinsz}[28]$
$n \approx 40M$, MINRES as 'preconditioner'

20 largest eigenpairs, 3D conv-diff.
$n = 512^3 \approx 134M$, GMRES
Iterative Solvers from PHIST: FEAST eigensolver (Polizzi '09)

- Imaginary part
- Real part
- 100 smallest eigenvalues
- Integration points
Iterative Solvers from PHIST: Linear Systems for FEAST/graphene

Tough:

- very large ($N \sim 10^9$ carbon atoms)
- complex symmetric and completely indefinite
- small random numbers on and around the diagonal
- spectrum essentially continuous
- shifts get very close to the spectrum

But also nice in some ways:

- 2D mesh, very sparse (~ 10 entries/row)
- many RHS/shift (block methods, etc.)

State of the art: direct solver, feasible up to a few million C atoms
Iterative Solvers from PHIST: The CGMN Linear Solver

- Björck and Elfving, 1979
- CG on the semi-definite problem \((I - Q_{SSOR})x = b\), where \(Q_{SSOR} = Q_1 Q_2 \ldots Q_N Q_{N-1} \ldots Q_1\) is the SSOR iteration on \(A A^T y = b\)
- \(Q_i v = (I - \omega \frac{a_i^T v}{a_i a_i^T})a_i^T\) : project \(v\) onto \(a_i\) (row \(i\) of \(A\))
- extremely robust: \(A\) may be singular, non-square etc.
- squaring \(A\) remedies small diagonal entries
- row scaling alleviates issue of ‘squared condition number’
Iterative Solvers from PHIST: Parallelization Strategies for CGMN

Algebraic Multi-Coloring

Distance-2 coloring resolves data dependency

- yields fine grained parallelism (e.g. GPGPU)

CARP: Component-Averaged Row Projection (Gordon & Gordon, 2005)
- sequential sweeps on subdomains
- exchange and average halo elements
- retains convergence properties of sequential algorithm

Idea: node-local MC with MPI-based CARP between the nodes
Iterative Solvers from PHIST: Scaling of CARP-CG
Intel Ivy Bridge

Graphene, 20M atoms/node (up to 5B)

- Coloring costs performance;
- but is more memory efficient;

Strong scaling, 20M unknowns in total

- yields better strong scaling;
- and has better potential for GPUs and Xeon Phi.
MC-CARP-CG: Cache Coherence Kills Performance on Socket Level

- Thread boundary
- Cache line
Conclusions

- **PHIST** with **GHOST** provides a pragmatic, flexible and hardware-aware programming model for heterogeneous systems.
 - Includes highly scalable sparse iterative solvers for eigenproblems and systems of linear equations
 - Well suited for iterative solver development and solver integration into applications

- Block operations distinctly increase performance of JDQR.
 - Slight increase of operations
 - Impact of memory layout: row- rather than column-major for block vectors
 - Higher node-level performance
 - Inter-node advantage: message aggregation

- CGMN with CARP and multi-coloring parallelization is suitable for robust iterative solution of nearly singular equations.
 - Appropriate iterative solver for FEAST in order to find interior eigenpairs,
 - in particular for problems from graphene design

- **Future**: AMG preconditioning for blocked JDQR & FEAST (Kengo Nakajima, University of Tokyo);
 exploitation of the non-linear Sakurai-Sugiura method (Tetsuya Sakurai, University of Tsukuba)
References

• Röhrig-Zöllner, Thies, Basermann et al.: *Increasing the performance of Jacobi-Davidson by blocking*; SISC (in print)

Thanks to all partners from the ESSEX project and to DFG for the support through the Priority Programme 1648 “Software for Exascale Computing”.

Computer Science, Univ. Erlangen

Applied Computer Science, Univ. Wuppertal

Institute for Physics, Univ. Greifswald

Erlangen Regional Computing Center
Many thanks for your attention!

Questions?

Dr.-Ing. Achim Basermann
German Aerospace Center (DLR)
Simulation and Software Technology
Department Distributed Systems and Component Software
Team High Performance Computing

Achim.Basermann@dlr.de
http://www.DLR.de/sc