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Abstract

Human hand movement models are needed for the design of humanoid robotic
hands. Humanoid hands are robotic hands that resemble human hands, espe-
cially regarding their appearance and their ability to move. Possible applica-
tion areas of humanoid hands are expected in human-inhabited environments,
in teleoperation and in prosthetics.
The goal for this thesis is to find out which kinematic properties of the human
hand are important and should be implemented in a humanoid hand. For this,
a model is desired that matches the mobility of the human hand as closely as
possible. It should be able to replicate the movements that the human hand is
able to do and avoid movements that the human hand is unable to do. Such a
kinematic model of the human hand that can be used for simulations has been
lacking.
This thesis aims to find answers to the following questions:

1. How can human hand movements be measured?

2. How can the kinematic structure be modelled?

3. How does the kinematic structure of the hand affect its functionality?

As answers to the first and second questions, for the first time, a complete
human hand movement model is created on the basis of magnetic resonance
imaging (MRI).
The whole tool chain from recording to the complete simulation is presented. It
contains the following steps: recording of hand postures in MRI, segmentation
of bones from the MRI images, determination of the bone poses, definition of
a set of joint types, identification of joint parameters and calculation of the
discrepancy between the measurement and the model, choice of a suitable joint
type from the set of joint types and the creation of surface geometries.
The discrepancy between measurement and model can be adjusted within cer-
tain limits by choosing suitable joint types. For example, a desired limit of 6◦

and 3mm on the mean discrepancy of each joint leads to a selection of joint
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types that result in a hand model with 24 degrees of freedom. This amount
of discrepancy is considered tolerable for grasping medium-sized objects. De-
pending on the desired application, other points on the trade-off curve between
complexity and accuracy need to be selected.
As an answer to the third question, above hand model is extended with surface
geometries and applied in a simulation of grasps. It is compared with two
additional hand models that contain alternative thumb joint types, since these
are particularly controversial. However, the six grasps that are investigated
do not show any clear difference between the thumb models. Additionally, the
human hand models are compared to a robotic hand model (DLR/HIT Hand II).
The robotic hand is able to reach five of the prescribed grasps, but not the grasp
of a pen or similar cylindrical object between the phalanges of the fingers. It is
able to fulfill the task only with an alternative grasp type.
It is hypothesised that hand movement models based on MRI are more accurate
than those based on position measurements of markers attached to the skin,
because the skin moves with respect to the bone and thereby violates the premise
of a rigid body mechanism, which is commonly used in kinematic modelling.
In this thesis, this hypothesis is tested by comparing MRI measurements and
skin marker measurements of a hand. The results do not show any substantial
accuracy difference between both methods, expanding the answer to the first
question by the fact that skin marker measurements can be used as well.
Hence, the skin movement does not seem to influence the measurement accuracy
more than other sources of error that occur in MRI measurements. Still, it may
be possible to further improve the measurement accuracy of the skin markers by
modelling and compensating the skin movement. In this thesis, the movement
of the skin with respect to the bone is measured using MRI. Furthermore, a
model for skin movement near joints is validated. It is shown that using this
model, the measurement accuracy can be substantially improved (by about
50%). This expands the answer to the second question on how to model the
kinematic structure, by including elastic skin kinematics in addition to rigid
bone kinematics.
This thesis provides the following core results:

1. The number of degrees of freedom of a data-driven hand model depends
on how closely the measured movements shall be replicated. This trade-
off between complexity and error is shown using three examples of hand
models based on MRI data.

2. Skin marker measurements provide similar accuracy as MRI for measuring



v

hand postures.

3. Skin movement is larger near joints but a large part of it can be explained
by a rotational model.

4. In a simulation of six defined grasps with three human hand models and
one robotic hand model, it is shown that a higher number of degrees of
freedom tends to increase grasp stability.

5. An influence of the kinematic structure on the ability to form force closure
grasps can not be shown with these combinations of grippers and object
grasps.

6. However, an influence of the link surface geometry on grasp functionality
can be shown: the so-called light tool grasp works better with thin fingers
than thick fingers.

7. Simpler grasps also tend to increase grasp stability.

In summary, the methods developed in this thesis allow the creation of kine-
matic hand models for investigating the most important kinematic properties
for humanoid robotic hands.
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Zusammenfassung

Modelle der menschlichen Handbeweglichkeit werden für die Konstruktion von
humanoiden Händen benötigt. Humanoide Hände sind Roboterhände, welche
menschlichen Händen ähneln, besonders hinsichtlich ihres Aussehens und ihrer
Bewegungsmöglichkeiten. Anwendungsmöglichkeiten von humanoiden Roboter-
händen werden in von Menschen bewohnter Umgebung, in der Telemanipulation
und in der Prothetik erwartet.
Das Ziel dieser Dissertation ist herauszufinden, welche kinematischen Eigenhei-
ten der menschlichen Hand wichtig sind und in humanoiden Robotern umgesetzt
werden sollten. Dafür ist ein Modell wünschenswert, welches die Beweglichkeit
der Hand so eng wie möglich abdeckt. Es sollte alle möglichen Bewegungen
der menschlichen Hand möglichst genau nachbilden und unmögliche Bewegun-
gen der menschlichen Hand vermeiden. Ein solches kinematisches Modell der
menschlichen Hand, welches für Simulationen verwendet werden kann, fehlte
bisher.
Diese Dissertation zielt darauf ab, Antworten für die folgenden Fragen zu finden:

1. Wie können menschliche Handbewegungen gemessen werden?

2. Wie kann die kinematische Struktur modelliert werden?

3. Wie beeinflusst die kinematische Struktur der Hand ihre Funktionalität?

Als Antwort auf die erste Frage wird erstmals mit Hilfe von Magnetresonanzto-
mographie (MRT)-Aufnahmen ein vollständiges Bewegungsmodell der mensch-
lichen Hand erstellt.
Der gesamte Ablauf von der Aufnahme bis hin zur fertigen Simulation wird prä-
sentiert. Folgende Schritte sind darin enthalten: Aufnehmen von Handstellungen
im MRT, Segmentieren der Knochen aus den MRT-Aufnahmen, Bestimmung
der Knochenlagen, Erstellung einer Liste von Gelenktypen, Identifizierung der
Gelenkparameter und Bestimmung der Abweichung zwischen Messung und Mo-
dell, Auswahl eines geeigneten Gelenktyps aus der Liste der Gelenktypen und
Erstellung von Oberflächengeometrien.
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Die Abweichung zwischen Messung und Modell kann in gewissen Grenzen einge-
stellt werden, indem geeignete Gelenktypen ausgewählt werden. Beispielsweise
führt eine gewünschte mittlere Abweichung pro Gelenk von weniger als 6◦ und
3mm zu einer Auswahl von Gelenktypen, die ein Handmodell mit 24 Freiheits-
graden ergeben. Dies wird als Abweichung angesehen, die beim Greifen von
mittelgroßen Objekten toleriert werden kann. Je nachdem, wie fein manipuliert
werden soll, kann die Genauigkeit des Modells eingestellt werden.
Als Antwort auf die dritte Frage wird das erwähnte Handmodell in einer Greif-
simulation eingesetzt. Dieses wird mit zwei weiteren Handmodellen mit alterna-
tiven Daumengelenken verglichen, weil die Ausformung der Daumengelenke be-
sonders umstritten ist. Allerdings zeigen sich bei den sechs untersuchten Griffen
keine klaren Unterschiede zwischen den Daumenmodellen. Des Weiteren wer-
den die menschlichen Handmodelle mit einem Roboterhandmodell (DLR/HIT
Hand II) verglichen. Fünf vorgegebene Griffe werden auch von der Roboter-
hand erreicht, nicht aber das Greifen eines Stifts oder ähnlichen zylindrischen
Objekts zwischen den Fingergliedern. Diese Aufgabe kann die Roboterhand nur
mit einem alternativen Grifftyp erfüllen.
Es wird vermutet, dass Handbewegungsmodelle, die auf MRT basieren, genauer
sind als solche, die auf Messung von Markerpositionen basieren, welche auf der
Haut aufgebracht sind, weil sich die Haut gegenüber den Knochen bewegt und
damit die übliche Annahme eines Starrkörpermechanismus verletzt. In dieser
Arbeit wird diese Vermutung durch einen Vergleich von MRT und Hautmarker-
Messung einer Hand überprüft. Im Ergebnis ist zwischen beiden Messmethoden
kein nennenswerter Genauigkeitsunterschied zu erkennen, womit die Antwort
auf die erste Frage dahingehend erweitert wird, dass Messungen von Hautmar-
kerpositionen ebenfalls verwendet werden können.
Die Hautbewegung scheint also die Messgenauigkeit nicht stärker zu beeinflussen
als andere Fehlerquellen, die bei MRT-Messungen auftreten. Dennoch kann die
Messgenauigkeit möglicherweise noch weiter erhöht werden, indem die Haut-
bewegung modelliert und kompensiert wird. Ein Modell zur Hautbewegungs-
kompensation wird in dieser Arbeit validiert wobei sich zeigt, dass dadurch die
Messgenauigkeit deutlich (um ca. 50%) erhöht werden kann.
Diese Dissertation stellt folgende Kernergebnisse zur Verfügung:

1. Die Anzahl von Freiheitsgraden eines datenbasierten Handmodells hängt
davon ab, wie genau die gemessenen Bewegungen nachgebildet werden
sollen. Dieser Zielkonflikt zwischen niedriger Komplexität und niedriger
Abweichung wird anhand dreier Beispiele von Handmodellen gezeigt, wel-
che auf MRT-Daten basieren.
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2. Hautmarkermessungen bieten ähnliche Genauigkeit wie MRT für die Mes-
sung von Handstellungen.

3. Hautbewegungen sind in der Nähe von Gelenken größer, können aber zu
einem großen Teil durch ein rotatorisches Modell erklärt werden.

4. In einer Simulation von sechs bestimmten Griffen mit drei menschlichen
Handmodellen und einer Roboterhand wird gezeigt, dass eine höhere An-
zahl von Freiheitsgraden tendenziell zu höherer Greifstabilität führt.

5. Ein Einfluss der kinematischen Struktur auf die Fähigkeit zur Erzeugung
von kraftschlüssigen Griffen kann bei diesen Kombinationen von Greifern
und Objektgriffen nicht gezeigt werden.

6. Jedoch kann ein Einfluss der Oberflächengeometrie der Fingerglieder auf
die Greiffähigkeit gezeigt werden: Der Griff eines dünnen Zylinders zwi-
schen den Fingergliedern funktioniert mit dünnen Fingern besser als mit
dicken.

7. Auch einfachere Griffe erhöhen tendenziell die Greifstabilität.

Zusammengefasst unterstützen die erarbeiteten Methoden bei der Erstellung ei-
nes kinematischen Handmodells zur Erforschung von wichtigen kinematischen
Eigenschaften für humanoide Roboterhände. Zusammengefasst ermöglichen die
erarbeiteten Methoden die Erstellung kinematischer Handmodelle zur Erfor-
schung von wichtigen kinematischen Eigenschaften für humanoide Roboterhän-
de.
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Anatomical terms
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MC2 MC4
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TZ

The abbreviated bone and joint names are explained in the Section Abbrevia-
tions below.

Glossary

DH parameters A minimal description of a serial chain of rotation or trans-
lation axes as described by Denavit and Hartenberg [1955] or a modification
thereof [Khalil and Dombre, 2002, Craig, 2005, Waldron and Schmiedeler, 2008].

ex vivo On the dead body, that is, experiments on cadaveric specimens.

generativeness The ability of a humanoid robot to avoid generating unnat-
ural poses.
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in vivo On the living body, that is, experiments with live subjects.

kinematics The study of movement without regarding the forces that might
cause it. In this thesis especially the movement abilities of a mechanism.

pose The position and orientation of a rigid object. The three-dimensional
pose can be fully described by six independent parameters.

posture The set of poses of multiple rigid bodies that constitute an articulated
object. “Hand posture” refers to the set of poses of the bones that constitute
the hand, where the bones are idealised as rigid objects.

Abbreviations

1a a joint with one rotation axis (see Figure 3.6)

2cia a joint with two coupled rotation axes (see Figure 3.6)

2ia a joint with two intersecting, possibly non-orthogonal, axes (see
Figure 3.6)

2oia a joint with two orthogonal intersecting axes (see Figure 3.6)

2ona a joint with two orthogonal, possibly non-intersecting, axes (see
Figure 3.6)

2na a joint with two general axes that are possibly non-orthogonal and
non-intersecting (see Figure 3.6)

3oia a joint with three orthogonal and intersecting axes (see Figure 3.6)

3ona a joint with three orthogonal, possibly non-intersecting, axes (see
Figure 3.6)

2D two dimensions, two-dimensional

3D three dimensions, three-dimensional

ANOVA analysis of variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

BCS bone coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

CoR centre of rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

CMC carpometacarpal (joint, see Section Anatomical terms above) . . . . 52

CT computed tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. (German
Aerospace Center)
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DIP distal interphalangeal (joint, see Section Anatomical terms above)

DoF degrees of freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

EC European Commission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

EVA extra-vehicular activity (in space) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

GUI graphical user interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

IP inter-phalangeal (joint of the thumb, see Section Anatomical terms
above)

IMC inter-metacarpal (joint, see Section Anatomical terms above)

LOOCV leave-one-out cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
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MCP metacarpophalangeal (joint, see Section Anatomical terms above)52
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above)
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PP phalanx proximalis (bone, see Section Anatomical terms above)

RMSE square root of mean squared error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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STA soft tissue artefact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
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a vector

a · b dot product

a× b cross product

A matrix

AT transpose of matrix

A−1 inverse of matrix

A(i:j,k:l) sub-matrix of matrix A, obtained by deleting the rows {1, . . . , i− 1}
and {j + 1, . . . , nrows} and deleting the columns {1, . . . , k − 1} and
{l + 1, . . . , ncolumns} (if i = j or k = l, one of them and the colon can
be omitted)

AB matrix product∏n
i=1Ai multiple matrix product, with

∏n
i=1Ai = A1A2 · · ·An

{a, . . . , b} integer interval

Aa coordinates of vector a expressed in coordinate system A

ATB transformation from coordinate system B to coordinate system A, such that
Aa = ATB

Ba

Rot(a, q) 3× 3 rotation matrix of a rotation around an axis a by an angle q:

Rot(a, q) :=

 c+ c′ a2x c′ ax ay − az s c′ ax az + ay s

c′ ax ay + az s c+ c′ a2y c′ ay az − ax s
c′ ax az − ay s c′ ay az + ax s c+ c′ a2z

 , (1)

with
c = cos q, c′ = 1− cos q and s = sin q,

where ax, ay and az are the Cartesian elements of the unit orientation vector a
[Meyberg and Vachenauer, 1999, p. 319].



1
Introduction

The subject of this thesis is the modelling of the movement abilities (kinematic
modelling) of the human hand, which is needed for the design of humanoid
robotic hands.

Humanoid robotic hands are robotic hands that resemble human hands, espe-
cially with respect to their shape and their kinematic abilities. In some situa-
tions, humanoid robotic hands offer some advantages over other types of robotic
grippers.

One such situation occurs when a robot is supposed to work with objects that
are normally used by humans, for example as an assistant for a paralysed person.
If its hand has the same shape, size and kinematic abilities as a human hand, it
can take advantage of object properties (for example, handles) that are adapted
to the human hand.

As another example, if a robot is tele-operated by a human operator, for exam-
ple, in a hazardous situation like defusing a bomb, the operation will become
simpler if the robot moves in the same way as the operator.

A third example is prosthetics, where it is often desired that the appearance of
the prosthetic device is human-like. Human-like kinematics will help to create
a human-like appearance.

In order to recreate the kinematic abilities of the human hand in a robotic hand,
one needs to know what they are. In other words, the designer of a humanoid

1



2 CHAPTER 1. INTRODUCTION

hand needs to have a qualitative or quantitative model of the human hand
kinematics.

Kinematic hand models are greatly simplified when regarding the hand as a
set of rigid segments which are able to move with respect to each other. A
hand posture is then described by the positions and orientations (poses) of each
segment. This approximation is supported by the high elastic modulus of the
bones and the relatively small thickness of the soft tissues compared to the
overall hand dimensions. It is often used in the literature and also throughout
most of this thesis.

The relative poses between neighbouring segments are constrained by joints. An
important aspect of kinematic models is the description of the joint types, that
is, of the kinds of movement between neighbouring segments that they allow.
The joint types for some of the joints of the hand are a matter of dispute. In
Chapter 3, a method is developed to select the appropriate joint types from a
list of joint types based on measurements of hand postures and thresholds on
the desired accuracy.

In the same Chapter, the method is applied to a set of magnetic resonance
imaging (MRI) images of a human hand in order to determine the joint types
at different accuracy constraints. A compromise between accuracy, simplicity
and naturalness is found at the user’s discretion.

In Chapter 4, the joint types are combined with joint parameters and surface
shapes of the finger and palm segments in order to create a more complete hand
model. This is the first generative hand model created from MRI images. A
possible application of the hand model is shown by using it in grasp simulations.
The grasp simulations are used to investigate the effect of different joint types
in the thumb on the ability to grasp predefined objects. The human hand
models are furthermore compared with a robotic hand model in order to discover
possibilities for the improvement of the robotic hand.

For determining the joint parameters of a hand model it is necessary to mea-
sure hand postures. One of the most widely used methods is optical motion
capture (MoCap), a system that tracks the positions of markers. The markers
are attached to the surfaces of fingers and palm. Since the skin surface is able
to move somewhat with respect to the underlying bone, the rigid-body assump-
tion becomes less appropriate. The error that is induced by measuring skeletal
postures using skin markers is called soft tissue artefact (STA). A reason for
using MRI as measurement methods in Chapters 3 and 4 is to avoid STA by
measuring bone poses more directly.

Chapter 5 is dedicated to the comparison between MRI and MoCap as mea-
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surement methods for kinematic hand modelling. It is hypothesised that MRI
measurements are more suitable for identifying the joint parameters of a rigid-
body model than MoCap measurements due to lack of STA. Since ground truth
about segment poses is not available, the inverse question is investigated as
proxy, that is, whether a rigid-body hand model is able to reproduce the MRI-
measured postures better than the MoCap-measured postures. It is assumed
that if the model can better explain one of the measurements, then, conversely,
the measurements can better be used to identify the model parameters.
The comparison between MRI and MoCap is carried out without any skin move-
ment model, that is, the markers are assumed to be rigidly attached to the bone.
However, using a model of the movement of the skin with respect to the bone,
the accuracy of MoCap-based model could possibly be improved. One such
model for skin movement near joints as a function of the skeletal movement
was proposed by researchers Zhang et al. [2003]. However, so far it lacked a
quantitative validation. In Chapter 6, this skin model is validated by using
simultaneous MRI measurements of bones and skin markers as ground truth.
In summary, this thesis proposes several methods for improving kinematic hand
models and shows how they can be applied for improving the design of humanoid
robotic hands.



4 CHAPTER 1. INTRODUCTION
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Related work

In this Chapter, the state of the art of research related to hand kinematics is
presented. It starts with an overview on robotic hands, continues with the de-
scription of work on the modelling of hand and finger joints and on the measure-
ment of hand and finger segment poses and concludes with review of literature
on how the kinematics of a hand affects its functionality.

2.1 Robotic hands

A fairly large number of humanoid robotic hand designs exists. On a website
about robotic hands [Mindtrans.narod.ru, 2010–2013], 31 advanced robotic hand
models and seven prosthetic hand models are listed. Most of them are humanoid
robotics hands.

One of the first articulated artificial hands was the prosthetic hand of Götz von
Berlichingen from the sixteenth century [Bertram, 2011]. In the eighteenth cen-
tury intricate automata like piano-playing or handwriting automata were built
[ABlogtoWatch.com, 2012]. The first five-fingered, electrically driven artificial
hand was probably the Belgrade Hand by Tomović and Boni [1962]. It was
conceived, but never used, as a prosthetic device [Bekey and Fermoso, 2008].
In 1986, the Utah/MIT Dextrous Hand [Jacobsen et al., 1986] was presented,
which featured strong actuators connected to the finger joints by a complex and

5
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large tendon routing mechanism. In the early nineties, the DLR Hand was built.
It is a detachable four-fingered tendon driven hand containing all motors in the
palm of the hand [Butterfass et al., 1998]. The DLR Hand II, which followed a
few years later, was built without tendons, and featured modular fingers driven
via gears [Butterfaß et al., 2001]. In Japan, the Gifu Hand was developed in
several versions. It also contains the motors within the hand, making it detach-
able [Kawasaki et al., 2002]. One of the first commercially available dexterous
hands is the Shadow Hand (Figure 2.1a), actuated via tendons by pneumatic
muscles in the forearm [Kochan, 2005].

The Anatomically Correct Testbed (ACT) hand [Vande Weghe et al., 2004]
(Figure 2.1b) aims at reproducing the biological structure of a human hand in a
robotic hand as closely as possible. This remarkable testbed includes, for exam-
ple, a complex crocheted replica of the extensor tendon apparatus. A goal is the
replication of the kinematic and dynamic behaviour of the human hand. Re-
garding the kinematics, earlier versions used technical joints, whereas recently,
a more true-to-nature approach with surface contacts is tested. However, the
surface shapes are still approximated as spheres instead of the more irregular
human joint surfaces [Xu et al., 2011].

Hydraulic actuation has been implemented in the Karlsruhe Anthropomorphic
Fluidic Hands [Schulz et al., 2004]. It is used in the research humanoid plat-
form ARMAR-III [Asfour et al., 2006] for assistant robotics in human-centered
environments.

One of the first commercial modular hands is the four-fingered DLR/HIT/Schunk
Anthropomorphic Hand [Liu et al., 2006]. A improved version, DLR/HIT Hand
II, was presented in 2008 [Liu et al., 2008] (Figure 2.1c).

In the early 2010s, the DLR Hand Arm System was presented [Grebenstein et al.,
2011] (Figure 2.1d). It features variable passive stiffness in all joints. The hand
of the DLR Hand Arm System (Awiwi hand) moves in 19 independent kinematic
degrees of freedom (DoF), each of which are driven by two antagonistic motors
in the forearm. This is more than the number of independent kinematic DoF
of the human hand, some of whose joints are somewhat coupled. Therefore it
is sometimes called “hyper-actuated”. The size of the fingers is within the 25th
and 75th percentile of human size (Grebenstein [2012], Figure 2.1). The DoFs
are distributed as follows: thumb, index and middle finger: four each; ring and
little finger: three each; palm arching: one. It differs from most other robotic
hands in that the joint axes of the PIP1 and DIP joints are neither fully parallel

1For the meaning of the joint names see Anatomical terms and Abbreviations at the be-
ginning of this thesis.
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to each other nor exactly orthogonal to the bones. This so-called inclination
leads to a radial or ulnar deviation of the phalanges during flexion, which is
“e.g. important grasping a palm sized or small ball”. Furthermore, “it enables
opposition of the little finger and thumb”. In addition,

the inclination rotates the phalanges toward the inside of the palm.
This rotation prevents (painful) contact of the sides of the fingers
and enables contact of the pulp with the object. Performing small
object power grasp, it also prevents lateral forces within the joints
due to laterally oriented contact forces. [Grebenstein, 2012]

Like most robotic hands, the Awiwi hand has four DoF in the thumb instead
of the five DoF that most bio-mechanists find in human thumbs. However,
Grebenstein claims:

The thumb TMC [=CMC1] placement and the twist and inclination
of the thumb IP has been optimized to meet the requirements of
the Kapandji test, used by surgeons to check grasping ability of hu-
man hands. Furthermore, grasping tests such as key grasp and large
cylinder power grasp have been used to further fine tune these pa-
rameters. The combination of proper TMC joint placement and IP
joint twist and inclination has shown to be able to adequately com-
pensate the missing fifth thumb DoF of the Awiwi Hand. [Greben-
stein, 2012]

The inclination of the human fingers and the axes of the MCP joints are such
that when the fingers are all flexed, their sides are pressed against each other
and can only be separated with considerable effort. This can be a problem in
robotic hands, since they generally lack the passive elasticity that the human
hand possesses, and therefore, the fingers can block each other during flexion.
This is especially the case if the robot fingers are wider at the tip than the
human fingers.
Robonaut 2, the first humanoid robot in space, is also equipped with two dex-
terous robotics hands [TIME, 2012]. Their 12 DoF each are distributed such
that the thumb has four DoF, index and middle finger three each and ring and
little finger one each. Its size is “within 60th to 85th percentile human male”
[Bridgwater et al., 2012] and it is able to emulate 90% of Cutkosky’s [1989] grasp
taxonomy [Diftler et al., 2011] (Figure 2.1e).
There are many more robotic hand designs, and with 3D printing technology
becoming affordable, many new designs have been presented within a short time
span, for example Gibbard [2013] (Figure 2.1f ).
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Shadow Hand. Picture by Richard
Greenhill and Hugo Elias of Shadow
Robotics, licensed under GNU-FDL.

Anatomically correct testbed hand.
Reprinted from Deshpande et al. [2013]
c©2013 IEEE

DLR/HIT Hand II. Picture by Holger
Urbanek of DLR.

The hand of the DLR Hand Arm
System. Picture by DLR.

The hands of Robonaut 2. Picture
by NASA.

Dextrus hand. Picture by Joel Gibbard,
used with permission.

Figure 2.1: Examples of humanoid hands.
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In summary, already many humanoid hand designs exist. Some of them are
already quite advanced, also from the kinematics view point. But maybe some
improvements can still be made.

2.2 Modelling of human hand and finger joints

Some aspects of the kinematic structure of human hands are apparent to the
common senses, for example, that the hand has five digits.2 The easily appar-
ent aspects further include the number of bony segments per fingers, namely
three. Some DoF are also easily apparent: the flexion/extension DoF of the
interphalangeal joints, the flexion/extension DoF of the MCP joints and the
abduction/adduction DoF of the MCP joints of index, middle, ring and little
finger.

However, there are less apparent properties of the kinematic structure of the
human hand that provoke scientific discussion and justify deeper probing. These
include: the precise orientations of the joint axes; the exact positions of the joint
axes and the link length ratios; especially, the positions and orientations of the
joint axes of the carpometacarpal and intermetacarpal joints of the thumb and
palm; the number of DoF of some joints; especially, which small movements
should be considered and whether they occur due to active movement of the
uninhibited hand or due to passive movement induced by external forces; and
the type of movement that the bones perform around the joint, that is, nearly
concentric or rather eccentric.

For example, it is disputed whether the CMC1 joint possesses two or three
DoF. The question was elaborately investigated by Koebke [1983]. The CMC1
joint connects the TZ bone of the carpus with the MC1 bone. It is saddle
shaped, that is, both joint surfaces are curved convexly in one direction and
concavely in another direction. The joint surfaces are oriented such that the
convex part of the TZ fits into the concave part of the MC1 and vice versa. Two
main movements take place: flexion/extension around the centre of the convex
curvature of the TZ and abduction/adduction around the centre of curvature
of the MC1. However, these main movements do not explain the rotation that
the thumb tip undergoes during the movement from a flat-hand posture to
opposition between the thumb and a finger. In a flat-hand posture, the thumb
points towards the ulnar and slightly palmar direction of the hand, whereas
in opposition, it point towards the ulnar and dorsal direction. Two competing

2For a number of reasons, individual hands may differ; for example, about 2 in 1000 humans
are born with a (more or less developed) sixth digit [Greene, 2008].
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explanations for this opposition movement have been proposed:

1. that the concave part of the TZ is curved in a way that the MC1 bone
rotates while maintaining close contact with the TZ, or

2. that the MC1 bone rotates around its longitudinal axis while moving away
from the TZ and thereby reducing the contact are to two small spots.

The first argument is supported by anatomical findings that there is indeed a
suitable curvature in the joint surfaces [Kuczynski, 1975]. The second argument
is supported by the fact that in cadaver dissection of arthritic hands, abrasions
at the two expected spots were found [Koebke, 1983].
The goal of kinematic modelling is to find a mathematical description of the
bone movements that reconstructs the actual movements that the human is
able to perform. This is closely related to the field of kinematic synthesis, as for
example described by Hartenberg and Denavit [1964]. Kinematic synthesis deals
with “mechanisms created to meet certain motions specifications” [Hartenberg
and Denavit, 1964]:

In the design of a mechanism for a given application, a decision must
first be reached regarding the type of mechanism to be employed,
as, for example, deciding between a cam or a linkage. The number
of links and connections required to give the desired DoF must then
be determined. Finally the required dimensions needed to bring
about a particular motion must be deduced. In the broadest sense,
kinematic synthesis thus consists of the three interrelated areas of
type, number and dimensional synthesis. [Hartenberg and Denavit,
1964, Preface]

A special case of the dimensional synthesis is the calibration of robots, as, for
example, described by Khalil and Dombre [2002]. Here the type of mechanism
and the number of links is fixed in advance, and even the dimensions are known
from the construction plans. The goal of robot calibration is to find out the
differences in dimensions between the construction plan and the actual robot,
which are due, for example, to the precision of the manufacturing process. So
robot calibration is dimensional synthesis with good initial values.
In human joints, the number of links and connections is known as the number
of bones and joints between them. The types of connections are sometimes a
matter of dispute.
For example, Youm et al. [1978] investigated whether the MCP joint behaves
like a simple rotational joint with a fixed centre of rotation (CoR) or like a
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Figure 2.2: Construction of the CoR of the MCP joint. Left: radial and ulnar abduc-
tion. Right: flexion–extension movement. The measured positions of the landmarks
on the phalanges are shown as faint dots. They all lie very close to circles around
the CoR, so the CoR can be assumed to be fixed. Reprinted from Youm et al. [1978],
Copyright (1978), with permission from Elsevier.

more complex cam-like joint with a moving CoR. For this, they constructed
the CoR graphically from a set of positions of bony landmarks during planar
movements measured using X-ray. In order to do so, they locked the PIP and
DIP joints of a cadaver finger and recorded series of X-ray images during planar
movements of the finger. The position of the CoR was constructed graphically
from a number measured positions of landmarks on the phalanges. It turned
out that different positions of a landmark during a movement are very close to
a circle drawn around the CoR (Figure 2.2). Therefore, it can be assumed that
the MCP joint behaves like a simple rotational joint with a fixed CoR.

Assuming fixed axes, the problem of the exact positions of the joint axes and
the ratio of link lengths was tackled in 2D by Buchholz et al. [1992]. From
measured trajectories of bony landmarks, they calculated centres of rotation
using Rouleaux’ method.

Sommer and Miller [1980] described “a technique for kinematic modeling of
anatomical joints”. They presented a method based on numerical optimisation,
with which they were able to determine the positions and orientations of multiple
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axes of rotation that connect two rigid bodies. They used the technique to
determine the locations of two wrist axes between the forearm (radius bone)
and the palm (MC2 bone).
An important issue in numerical optimisation is the choice of the cost function ε,
as well as the calculation of its gradient. The cost function by Sommer and Miller
was the sum of the squared differences between the measured and modelled palm
coordinate system origins added to the squared differences between three Euler
angles that describe the orientation of the palm coordinate system:

ε =
∑
t∈P

[
3∑

i=1

(r
′
it − rit)2 +

3∑
i=1

(ψ
′
it − ψit)

2

]
,

where t is a time sample, P is a set of measured postures, r′it is the i-th coor-
dinate of the measured position of the palm coordinate system with respect to
the forearm coordinate system at time sample t, rit is the corresponding coordi-
nate of the modelled position, ψ′it is the i-th Euler angle of the measured palm
orientation with respect to the forearm orientation and ψit is the corresponding
Euler angle of the modelled orientation.
In this thesis, a cost function different from the one of Sommer and Miller is
developed, with the goal of providing a more intuitive interpretation of its value.
Khalil and Dombre [2002] provide approaches on how to calculate the gradient
of the cost function with respect to both the dynamic and the static variables.
Cerveri et al. [2008] used the square root of mean squared error (RMSE) between
measured and modelled marker positions as the cost function and minimised it
in a nested optimisation, in which the joint angles were optimised in the inner
loop using the Jacobian as a gradient and a Newton-Raphson optimiser, and
the static parameters (axis position and orientation) were optimised in the outer
loop using an evolutionary algorithm.
For spherical joints, the CoR can also be found with a closed-form solution
[Chang and Pollard, 2007a]. A closed-form solution is desirable because of
execution speed and repeatability. However, to the author’s knowledge, for
determining the axis orientations and positions of joints other than spherical
joints, no closed-form solution is known.
A different approach to the determination of axis positions and orientations
was taken by Cerveri et al. [2007]. They defined a 22-DoF kinematic model
and used the positions of markers placed on anatomical landmarks such as
joint knuckles in one static posture and measurements of joint thickness for
determining the positions and orientations of the fixed rotation axes according
to a defined algorithm.
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Such chains of rotation axes that are fixed with respect to the parent axes have
shown to be a suitable approximation for most finger joints. An exception to
this is the CMC1 joint, where modelling with fixed rotation axes leads to larger
residual errors than in the other joints [Stillfried and van der Smagt, 2010].
Therefore, Synek [2011, 2012] took a more complex approach to modelling the
CMC1 joint. He simulated the movement of the CMC1 joint by balancing the
forces of the joint surface contact, the tendons and the ligaments with the accel-
eration of the finger segment mass. Goß [2012] extended the simulation method
to multiple joints in order to simulate the chain of middle finger phalanges.
While he employed the simulation software Simpack with a special polygonal
contact model in order to speed up the simulation, the computation times were
still too large for many practical applications.

Van Nierop et al. [2008] presented an interesting biologically-inspired joint model
in which two different curvatures are assumed for the joint surfaces of finger
joints. This means that the positions of the rotation axes jump at certain
points during movement. While may capture the human movement better, it is
not straightforward to implement in a robotic joint.

Some researchers (for example, Moritomo et al. [2003], Miyata et al. [2005]),
have used helical axes to describe measured skeletal movement. These represent
exactly the movement between discrete measured poses and can be seen as an
average of the instantaneous helical axes of the movement between the poses3.
They are a useful tool for the qualitative description of the movement. However,
since the helical axes are generally different for different poses, they do not
constitute a model of the movement.

Sancho-Bru et al. [2011] proposed a “self-contained biomechanical model” in-
cluding kinematics, tendons, muscles, ligaments, a contact model, a model for
neural control and ergonomic evaluation criteria in order to evaluate grasps
entirely in simulation, without the need for any measurement data.

In summary, models for single joints and limbs other than the hand have been
created, as well as a whole-hand model based on MoCap. The contribution
of this thesis to the topic of hand and finger joint modelling is described in
Chapter 3. In contrast to most other works in literature (e.g., Rohling and
Hollerbach [1994], Hollister et al. [1995], Cerveri et al. [2005, 2007]), it includes
different joint type hypotheses and a method to choose from these, and it is the
first complete hand model based on MRI.

3Woltring et al. [1987] have described a method for estimating the instantaneous helical
axes using splines.
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2.3 Measurement of human hand and finger postures

In order to measure the kinematic properties of human joints in detail, different
methods have been applied. Due to their rigid nature, it is much easier to
mathematically describe the movement of the bones than that of the soft tissues
surrounding them. This poses the problem of how to measure the movement of
the bones.
One approach is to cut open the skin and insert screws or needles into the bone
in order to attach a measurement device rigidly to the bone. Due to its invasive
nature, this method has mostly been applied ex vivo.4

For example, Manter [1941] investigated the movement of the subtalar joint
with the calcaneus fixed and the talus mobile. He bolted rods to the talus to
determine the plane of rotation as well as the position of the rotation axis.
As an example of an invasive method on the hand, Hollister et al. [1992, 1995]
attached a mechanical axis-finder to bone pairs in the thumbs of cadaver hands.
The axis finder consisted of one or two mechanical axes whose positions and ori-
entations relative to the bone attachment locations could be varied. The axes
were adjusted manually while moving the joint until the axes remained station-
ary during the joint movement. The result was recorded using photographs, in
which the axis locations relative to the bone or finger shapes are visible.
Another method is to leave the skin intact and record the bone poses with med-
ical imaging. Imaging methods with ionising radiation (X-ray and computed
tomography (CT)) produce a good contrast between bone and surrounding tis-
sues. However, since they can cause cancer, they are usually only used in vivo
if medically necessary or ex vivo for research purposes.
For example, Pearcy and Whittle [1982] tracked poses of the vertebrae of the
lumbar spine by calculating 3D positions of anatomical landmarks from biplanar
radiographs. In a combination of invasive and imaging methods, Lundberg et al.
[1989] inserted “three or more beads of tantalum” into each of seven bones and
recorded their positions using X-ray stereophotogrammetry, in order to measure
postures of the ankle.
Buchholz et al. [1992] took planar X-ray images of finger joints ex vivo during
flexion/extension movements and used bony landmarks for tracking planar bone
movement. In MRI, the contrast is not as good, the grey values do not only
depend on the tissue type but also on the surrounding tissue and the location
in the MRI scanner, but it is considered safe for human usage [Dempsey et al.,
2002].

4For STA measurements in joints other than finger joints, invasive experiments have also
been carried out in vivo. References to those experiments are found in [Leardini et al., 2005].



2.4. SKIN MOVEMENT 15

Kamojima et al. [2004] recorded MRI images of a hand in vivo. They segmented
the bones manually from one of the volume images. To determine the relative
poses of the bones in the other images, they did a manual pre-registration and a
subsequent automatic registration by maximising the intensity values inside the
registered volume. Also in this thesis, MRI is used for measuring bone poses.
The registration of the bone point clouds is accomplished by an algorithm from
3D robotic vision (Section 3.1.1).
A third method is measuring positions of points on the skin or fingernail and
inferring the bone pose by ignoring or modelling the relative movement between
skin and bone. Usually, for these measurements, markers are attached to the
skin and their positions are measured by stereophotogrammetry. Even though
there are also methods for markerless, video-based measurements of hand pos-
ture, to the author’s knowledge they always require an existing model of the
kinematic structure and cannot be used to make measurements for creating a
model of the kinematic structure.
As Lundberg [1996] wrote, the mathematical methods for stereophotogramme-
try (calculating 3D positions from 2D images) have been known in the field of
geological survey for a long time. With computers taking over the calculating
effort, stereophotogrammetry has become frequently used also in biomechanical
analysis. The earliest examples mentioned by Lundberg are from 1992 and deal
with the movement of the knee (Koh et al. [1992] in Lundberg [1996]).
Rohling and Hollerbach [1993] used a single light-emitting diode marker on a
fingernail in combination with an exoskeleton that measured the joint angles
to create a kinematic model of the finger joints. Cerveri et al. [2005] placed
multiple markers on all segments of the hand and measured their positions
during movements that involved “the action of all the functional DoF with wide
range of motion (RoM)s of the fingers and dorsum”.
In summary, in vitro and in vivo measurement methods of the bones and of the
skin have been developed. In this thesis, both optical and MRI measurements
are taken and the residual errors of models based on these two modalities are
compared. The measurements are described in Chapter 5.

2.4 Measurement, modelling and compensation of skin
movement

Frequently, surface-based measurements are used in biomechanics to infer skele-
tal kinematics. However, these measurements suffer from STA, i.e., from errors
due to relative movement between the skin and the bone.
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The causes for STA are described by Leardini et al. [2005]:

Inertial effects, skin deformation and sliding, which occur mainly in
areas closer to the joints, and deformation caused by muscle con-
tractions, contribute independently to STA. Because of its nature,
the artifact has a frequency content similar to the actual bone move-
ment and it is therefore very difficult to distinguish between the two
by means of any filtering technique.

In the literature, different researchers dealt with the problem of STA. They
used different methods to measure STA and proposed different methods for
compensating it. For measuring bone motion, some researchers used percuta-
neous invasive methods (bone pins, external fixtures), medical imaging (X-ray,
CT, fluoroscopy, MRI) and palpation of anatomical landmarks on the bones
(see reviews by Leardini et al. [2005] and Peters et al. [2010]). Additional mark-
ers were fixed to the skin, and the movement of both the skin and bones was
measured. Most of the these works dealt with the lower limb.
The percutaneous methods provide the possibility of tracking bone poses very
accurately, because the percutaneous structures are in direct contact with the
bones. Whereas intracortical bone pins and external fixtures are fixed to the
bone by screws that enter the bony material, the bone tracking device only pen-
etrates the periosteum surrounding the bones and ensures a stable connection
by clamping the bone from different sides. On the downside, the invasive meth-
ods leave the subjects with the risk of scars, pain and infection; furthermore, the
percutaneous structures interfere with the skin movement, thereby introducing
an error into the STA measurements.
Medical imaging can be used to measure bone poses without interfering with
the skin movement.
In order to measure STA, different methods have been applied, and many of
them are described in a paper by Leardini et al. [2005].
Unconstrained skin movement was measured with medical imaging methods,
such as X-ray, CT and MRI. The movement of the bones was calculated by
image registration or by tracking previously implanted markers. The first work
using MRI to measure STA and also the first work measuring STA on the hand
was, according to the author’s knowledge, by Ryu et al. [2003, 2006]. They mea-
sured the relative movement between skin and bone by analysing MRI images
of bones and skin markers of six subjects in three postures. They published the
results for the skin over the MC2 bone, which moved up to 11mm relative to
the bone. Researchers of the Dexmart project [Corato et al., 2009] took similar
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measurements, with one subject and two hand postures, and obtained simi-
lar results. They published results for marker movements over two metacarpal
bones, one phalangeal bone and over the carpus. In order to obtain a more com-
prehensive view, with STA values for all bones and joints of the hand, further
MRI measurements are conducted as part of this thesis in Section 6.1.1.
Sometimes apparatuses are used to constrain the relative movement, for exam-
ple, by Marin et al. [1999]. Also identifying the postures of kinematic chains
instead of poses of single segments can be used to mitigate the effect of STA
[Leardini et al., 2005]. Another interesting approach for reducing STA is lock-
ing one joint and measuring the pose of the newly formed rigid body at a place
where the skin is less mobile (Lucchetti et al. [1998] in Leardini et al. [2005]).
The most simple model is a rigid connection. It is frequently used, for example,
by Cerveri et al. [2005], but the resulting STA is arguably the largest of all
possible models. Models of skin-vs.-bone movement include translational move-
ment, either as a linear function of the joint angles [Dumas and Cheze, 2009]
or as a non-linear function [Corato et al., 2009], and a rotational movement as
linear or non-linear function of the joint angles [Zhang et al., 2003].
In the literature, there are two different models of skin movement on the hand
and fingers: Zhang et al. [2003] model the movement of skin markers near joints
as a rotation around the skeletal joint axis; Corato et al. [2009] modelled the
movement of skin markers as translations along the axes of the bone coordinate
system. In the following, both skin models are explained. Soft tissue move-
ment models in other body parts include a lookup table [Cappozzo, 1984] and
a multilinear regression model [Gao, 2009].
The rotational skin movement model by Zhang et al. aimed to explain the
movement of skin markers near the MCP, PIP and DIP joints of the fingers
during flexion/extension movements of these joints. The markers attached to
the fingertips were considered to be fixed to the PD bones. Skin movement was
treated as a 2D problem in the sagittal plane5. The main components of the
model are shown in Figure 2.3. The finger number was indicated by the index
i ∈ {2, . . . , 5} and the joint number was indicated by the index k ∈ {1, . . . , 3}.
The distances Li

k between centres of rotation Ci
k−1 and Ci

k and the distances
dik between CoR Ci

k and the marker M i
k were assumed to maintain constant

length. This also applied to the distance Li
1 between the fingertip marker M i

0

and the DIP CoR Ci
1. The angle αi

k between the line connecting Ci
k and M i

k

and the line connecting Ci
k−1 and Ci

k was modelled as a function of the angle
θik between the line connecting M i

k−1 and M i
k and the line connecting M i

k and

5flexion/extension plane, see Anatomical terms at the beginning of this thesis.



18 CHAPTER 2. RELATED WORK

digit i) changes its length in segmental flexion–extension
whereas an internal link vector Li

k does not. The vector
d i

k; which points from the surface marker on an inter-
segmental joint to the corresponding COR, also main-
tains a constant length while rotating around the COR
during flexion–extension. The following relationship

exists at any time instant t:

l i
kðtÞ ¼ Li

kðtÞ � d i
k�1ðtÞ þ d i

kðtÞ: ð1Þ

Its differential form also holds as

Dl i
kðtÞ ¼ DLi

kðtÞ � Dd i
k�1ðtÞ þ Dd i

kðtÞ: ð2Þ

When expressed in the local reference frame attached
to the Li

kðtÞ; Eq. (2) becomes

Dl i
kðtÞ ¼ �d i

k�1ðtÞ � D~bb
i

k�1ðtÞ þ d i
kðtÞ � D~aai

kðtÞ; ð3Þ

where D~bb
i

k�1ðtÞ is the vector representation of an
infinitesimal change in the rotation angle of d i

k�1ðtÞ
relative to Li

kðtÞ; and D~aai
kðtÞ represents an infinitesimal

change in the rotation angle of d i
k also relative to Li

kðtÞ
(see Fig. 3).
Since d i

k�1ðtÞ and d i
kðtÞ have constant lengths, the

magnitude of change in the surface link vector Dl i
kðtÞ

�� ��
should have a linear relationship with Dai

kðtÞ as well as
Dbi

k�1ðtÞ: Note Dl i
kðtÞ

�� �� could be considered as ‘‘surface
marker excursion’’ around the joints, and is different
from the inter-marker distance change D l i

kðtÞ
�� ��:

On the other hand, Dl i
kðtÞ

�� �� is caused by and should
have a certain quantifiable relationship with the
segmental flexion–extension:

Dl i
kðtÞ

�� �� ¼ f ðDyi
kðtÞÞ; ð4Þ

where Dyi
kðtÞ is an infinitesimal change in the marker-

defined flexion–extension angle for segment k of digit i

(see Fig. 3). This relationship can be empirically
synthesized from the acquired data. Therefore, a
quantitative relationship between Dai

kðtÞ and Dyi
kðtÞ; or

between ai
kðtÞ and yi

kðtÞ; can be inferred, and then
utilized in the following optimization routine formu-
lated to derive finger segmental COR locations through
determination of d i

k (i ¼ 2;y; 5; k ¼ 1;y; 3).
The optimization routine minimizes the variation of

internal link lengths over the entire movement (includ-
ing both flexion and extension):

Ji ¼
X3
k¼1

XT

t¼1

Li
k

�� ��� l i
kðtÞ þ d i

k�1ðtÞ � d i
kðtÞ

�� ��� �2( )

ði ¼ 2;y; 5Þ: ð5Þ

In this formulation, l i
kðtÞ and yi

kðtÞ are given, and the
unknown variables are Li

k

�� �� and d i
kðtÞ: The d i

kðtÞ is
quantified by a time-constant magnitude d i

k

�� �� and an
orientation angle ai

kðtÞ: Since ai
kðtÞ is time-variant, the

above routine would contain an extremely large number
of ai

kðtÞ variables (equal to the number of discretized
time frames� 12), resulting in a computationally in-
tractable optimization problem. This is where a para-
meterized relationship between ai

kðtÞ and yi
kðtÞ—let it be

symbolized as ai
kðtÞ ¼ gðyi

kðtÞÞ—could help properly
constrain the problem and effectively condense its
dimensionality. Parameters relating ai

kðtÞ to yi
kðtÞ would

thus be part of the solution yielded from the routine. In
solving the optimization problem, d i

0

�� ��; yi
0ðtÞ; and ai

0ðtÞ
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and internal CORs during the flexion–extension of a digit i (i ¼ 225).

The model incorporates four markers Mi
0�3 at the FT, DIP, PIP, MCP

landmarks, respectively, and three CORs Ci
1�3 of DIP, PIP, and MCP

joints, respectively. During the flexion–extension of joint k, l i
k changes

its length and orientation, Li
k changes its orientation while maintaining

a constant length, and d i
kðtÞ only rotates around Ci

k ; changing its

orientation ai
k relative to Li

k and bi
k relative to Li

kþ1:

X. Zhang et al. / Journal of Biomechanics 36 (2003) 1097–1102 1099

Figure 2.3: The rotational skin movement model by Zhang et al. [2003]. Reprinted
from Zhang et al. [2003], Copyright (2003), with permission from Elsevier.

M i
k+1:

αi
k(t) = g(θik(t)).

Specifically, a linear function was chosen:

αi
k(t) = cik θ

i
k + δik.

The parameters cik, δ
i
k and dik were optimised to minimise the variation in in-

ternal link length Li
k. The resulting values for cik ranged from 0.27 to 0.47

and those for dik from 0.48 to 0.67 of measured corresponding joint thickness.
Zhang et al. [2003] considered the values for dik plausible. Values close to 0.5
for dik mean that the joint centres were close the middle of the bone. A plot of
the measured marker positions with respect to their proximal modelled bones
showed an approximately circular trajectory, which further supports this model.

However, the model has been lacking a complete quantitative validation. To fill
this gap, a validation of the skin movement model is done in Chapter 6 of this
thesis.

In their translational skin model, the Dexmart project [2009] postulated that a
skin marker i moves along the Cartesian directions of the corresponding bone
coordinate system with distances depending on the joint angles:

mi =

φx(θ) 0 0

0 φy(θ) 0

0 0 φz(θ)

 wi,

wheremi is the marker position in the parent bone coordinate system in homo-
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geneous coordinates, wi are model parameters and φ(θ) are polynomial regres-
sion functions of the distances with respect to the joint angles. The order of the
polynomial is chosen separately for each component. A greedy algorithm was
used for choosing the order and the coefficients of the polynomials. The model
was quantitatively validated.

The Dexmart model was applied in four trials to an index finger and thumb
(32 markers on a latex glove). Joint axes and marker movement parameters
of the translational model were optimised. The RMSE between the measured
and modelled marker positions was 0.91–1.02mm with a rigid model and 0.66–
0.80mm with a moving-marker model. The percentage improvement was 18.2–
27.8%.

In summary, STA has been measured invasively and non-invasively. In this the-
sis, such measurements are presented for the first time for all segments of the
hand. Rotational and translational models for skin movement have been pre-
sented in literature. The rotational model was not yet quantitatively validated,
which is done in Chapter 6 of this thesis.

2.5 The role of the kinematic structure for the prac-
tical abilities

A goal of the kinematic measurements is trying to understand how the func-
tionality of the hand depends on its kinematic properties.

Jones and Lederman [2006] started their book Human Hand Function with a
description of the abilities of the hand:

The human hand is a miraculous instrument that serves us extremely
well in a multitude of ways. We successfully use our hands to identify
objects and to extract a wealth of information about them, such as
their surface texture, compliance, weight, shape, size, orientation,
and thermal properties. We demonstrate impressive manual dex-
terity when reaching for, grasping, and subsequently manipulating
objects within arm’s reach. Manual gesture, such as those used in
sign language and finger spelling, collectively offer valuable forms of
communication to those who are deaf or hearing impaired. [...]

The book “analyzes and synthesizes the results of fundamental research drawn
from a broad range of disciplines that contribute in important ways to our
understanding of human hand function.”
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The hand surgeon Kapandji [1992] described in his book Physiology of the Joints
the anatomy of the hand and its kinematic capabilities. He listed a taxonomy
of different grasp types and provided functional examples in which these grasp
types are used. He further summarized other functions of the hands, such as
percussion, contact and signaling. As a means of understanding the functional
role of the kinematic structure of the hand, he devised alternative structures in
thought experiments and pointed out the things that those hands could not do
anymore. A further taxonomy of grasp types was provided by Cutkosky [1989]
and extended by Feix et al. [2009].

Grebenstein [2010, 2012] described how different grasp types (pinch, key, power,
sphere) depend on kinematic properties such as thumb CMC joint position and
orientation and fingertip rotation, intersection of thumb and index finger tip
workspace, finger MCP first axis orientation, finger medial and distal pha-
lanx reorientation with flexion, palmar arching and rotation of the little finger
workspace towards the thumb.

Lewis [1977] compared the shapes of human and other primates’ joint surfaces,
especially of the CMC and MCP joints, and demonstrated “that the human
joints have been quite strikingly modified in a number of ways, and that these
evolutionary changes may be logically correlated with the refined functional
attributes of the human hand.”

Iberall [1997] presented “an analysis of human prehensile capability [...], compar-
ing a symbolic description of prehension to an opposition-space, parameterized
framework. By pointing out features of the human hand in prehensile tasks,”
she hoped “to offer insights that designers can use for building more versatile
robot and prosthetic hands.”

Chalon et al. [2010] published guidelines for robotic thumb design, some of which
concerned kinematic aspects and were related to hand functionality.

Further understanding of the role of kinematic properties for the functionality
of the hand are provided by simulations of grasps with different hand models.
Fairly extensive work in the field of grasp simulation has been done by Miller,
Ciocarlie and Allen around their grasp simulator GraspIt! [Miller, 2001], which
contains a human hand model. The axes of its thumb joints are placed such
that they optimally fit a model to measured electromyographic (EMG) signals
and fingertip forces. The finger joint axes are simply three parallel axes and one
orthogonal axis. The surface is taken from animation software. GraspIt! allows
automatic planning and evaluation of grasps, by using so-called eigengrasps,
a low-dimensional representation of the joint angle space in which most of the
common hand movements are covered [Allen et al., 2009]. Different hand models
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and objects can be loaded.
Diankov [2008, 2010] developed the open-source software OpenRAVE, an envi-
ronment for planning, simulation and automatic execution of robotic manipu-
lation. It strongly focuses on modularity in order to allow users to test specific
parts of software, for example, planning algorithms, without having to deal with
all other aspects of the simulation such as kinematics, collision detection and
visualisation. The software OpenGRASP is an extension of OpenRAVE that
was developed within the GRASP European Commission (EC) project [León
et al., 2010]. It includes “plugins for specific sensors used to improve the grasp-
ing capabilities of the robot”, “more physics engines and collision checkers that
helps to compare and improve the simulation performance”, “a standard plugin
interface of a basic actuator”, an abstraction layer for physics engines, utilities
for creating robot and object models, as well as set of robotic hand models
[GRASP, 2011].
In summary, some insight on how kinematic properties affect the functionality
of the hand exists, but the picture is far from complete. Grasp simulations may
be a useful tool for further exploring the role of the kinematic properties for
hand functionality.
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3
Determination of joint types

In this Chapter, which is based on [Stillfried, 2009] and [Stillfried et al., 2014],
the selection of joint types of the human palm and finger joints is presented.

3.1 Methods

For the selection of joint types, a list of joint types is defined, finger segment
poses are measured, the joint parameters are adapted to the measurements and
the residual error between modelled and measured segment poses is calculated.
A threshold on the mean residual error is defined and the simplest joint type
whose residual error is lower than the threshold is selected.

3.1.1 Measurements of finger segment poses using MRI

In the following Section, the processing steps from image acquisition to segment
pose are described. They involve the segmentation of the 3D images, the reduc-
tion of the segmented volumes to point clouds and the alignment (registration)
of the point clouds of the same bones in different images.

MRI images and segmentation

The MRI images are taken on a Philips Achieva 1.5T unit, with a Philips SENSE
eight-channel head coil to receive a more homogeneous signal and to improve

23
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the signal-to-noise ratio (SNR). For a given object of interest and a given MRI
sequence, SNR is proportional to the voxel1 volume and to the square root of
the net scan duration:

r ∝ v
√
t, (3.1)

where r is the SNR, v is the voxel volume and t is the net scan duration, that
is, the time actually spent for signal acquisition. Thus for every application
an individual compromise has to be found optimally balancing the needs for a
small v (high spatial resolution), small t (short scan times to minimise potential
motion artefacts) and large r (image quality sufficient for either diagnosis or—as
in this case—the segmentation of certain anatomic structures).
An optimal compromise is found with a total scan duration (which is always
longer than the net scan duration) of between two and two and a half min-
utes and a spatial resolution of (0.76mm)3. Note that, from Equation (3.1), a
voxel volume of (0.38mm)3 would require 64 times the scan duration in order
to achieve the same SNR. To further minimise motion artefacts the hand is
stabilised using modelling clay. For post-processing, the spatial resolution is
interpolated to (0.38mm)3 in order to achieve sub-voxel resolution in the seg-
mentation process. In the processing step after the segmentation, the grey value
information is discarded. The interpolation helps retain some of the information
that is contained in the grey values.
For scanning, a sequence type called balancedFFE is used (also known as true-
FISP or balancedSSFP) with TR/TE/flip angle = 4.8ms/2.4ms/45◦. The repe-
tition time TR is the time between two successive excitation pulses. The trans-
verse component of the magnetization is read out at echo time TE after each
pulse.
The advantage of balancedFFE is that it yields a strong signal at short TR. (In
fact, the signal of the balancedFFE sequence becomes independent of TR, which
can be as low as 2.5ms with the limiting factors being the readout time and the
avoidance of peripheral and heart muscle stimulation.)
As a drawback, balancedFFE is prone to the so-called banding artefacts appear-
ing as black stripes across the bone. This artefact can in principle be overcome
by applying the balancedFFE offset averaging technique (also known as CISS
or FIESTA-C), but requires twice the scan time.
Another artefact occurring in these sequences is opposed phase fat/water can-
celling, where voxels containing both fat and water appear dark, because the
magnetisation vectors of fat and water point in opposite directions.

1voxel “volume pixel” = basic volume element of a 3D image; analogous to pixel in 2D
images
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Figure 3.1: Segmentation process. Top left: Slice of an MRI image, showing the
middle finger metacarpal (MC3). Tissue types can be discriminated by the intensity of
the signal that is emitted. Segmentation is done at the boundary between cancellous
and cortical bone. Top right: Threshold-based preselection. Bottom left: Manually
refined selection. Bottom right: Segmented volume consisting of the selected areas
from all slices. Reproduced from Stillfried et al. [2014].

Also a so-called cine-sequence, a continuous-motion sequence with two to five
images per second, is recorded. However, only one image layer for the whole
hand can be recorded, which renders this method unusable for the purpose of
exact bone localisation.
The images are taken of a 29-year-old female subject with no history of hand
problems who gave informed consent to the procedure. 51 images are taken in
different hand postures with the aim of reflecting each joint’s range of motion.
From the MRI volume images, the bones are segmented. In fact, not the whole
bone volume is segmented but the signal-intense volume inside the bone that
corresponds to the cancellous bone. The tissue between the trabeculae of the
cancellous bone is bone marrow consisting mainly of fat, which yields high signal
intensity in the balancedFFE sequence.
The cortical bone, which forms the outer calcified layer of the bone, hardly
contains any free fat or water protons and therefore stays dark in the MRI
image. Near the bones there are other low-signal structures like tendons, which
makes it difficult to determine the outer bone surface. Therefore, the boundary
between cancellous and cortical bone is used for segmentation (Figure 3.1).
The bones are segmented from the image by highlighting the cancellous bone
area in each slice of the MRI image. In the medical imaging software Amira
(Visage Imaging GmbH, Berlin, Germany), the area is preselected by adjusting
a threshold and refined manually (Figure 3.1).
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Motion estimation

For the purpose of estimating the rigid motion of bones between different hand
postures, some geometric structure rigidly related to each bone has to be ex-
tracted from the MRI images that can be reliably recovered with little shape
variation between images. Automatic reconstruction of the bone geometry is a
challenge, as the image density of cancellous bone, cortical bone and surrounding
tissue can vary greatly between and across images. Also manual segmentation,
besides being tedious work, is prone to introducing shape variation.
Hence a double strategy is pursued. The border between cancellous and cortical
bone often produces a marked contrast edge at reproducible locations. These
border points can hence be detected by selection of high-contrast points. In
the absence of such a marked density contrast, on the other hand, guidance by
manual bone segmentation is needed. This double strategy is implemented as
follows. First, the bone segments are padded with zero-density voxels to fit in
a cuboid volume. Then a dipolarity score of the padded density within each
3× 3× 3-voxel sub-volume is computed, as

Dipolarity(c1, c2, c3) =

∥∥∥∥∥ ∑
(i,j,k)∈{c1−1,c1+1}
×{c2−1,c2+1}
×{c3−1,c3+1}

I(i, j, k)

 i− c1j − c2
k − c3

 ∥∥∥∥∥.

Here I(i, j, k) is the MRI image density as function of the voxel indices (i, j, k),
and (c1, c2, c3) are the indices of the centre voxel within the 3 × 3 × 3-voxel
sub-volume. The sum computes the density-weighted centroid of voxels around
the voxel at (c1, c2, c3); its Euclidean norm quantifies the degree of dipolarity
of the density at the centre voxel. It attains high values for centre voxels close
to a strong density edge. Finally, the centre voxels with the top q percent
of dipolarity are selected as representing bone-related points. The grey value
information is discarded in the selected points, but the interpolation mentioned
in Section 3.1.1 is used to refine the point set. The quantile q is chosen to
produce a data set of between 2,000 and 20,000 points, depending on the size
of the bone. This way, points on the manually determined bone border are
selected in the absence of high-contrast edges in the image; while high-contrast
image edges dominate the selected points where available.
The above procedure produces sets of points that are close to the surface of the
bones. However, missing parts and shape variation cannot be avoided. More-
over, there is no correspondence of points across different data sets of the same
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bone. A robust estimator of motion between such data sets hence has to be
employed. A correspondence-free alignment that is also robust to geometric
deviations [Hillenbrand, 2010] is provided within the framework of parameter-
density estimation and maximization, or parameter clustering. This is a robust
estimation technique based on location statistics in a parameter space where
parameter samples are computed from data samples [Hillenbrand, 2007, Hillen-
brand and Fuchs, 2011]. The estimator may be viewed as a continuous version of
a generalised, randomised Hough transform. In the present variant, samples are
drawn from the 3D points selected through the high-dipolarity criterion above.
Let X,Y ⊂ R3 be the point sets extracted from two MRI images of the same
bone. A motion hypothesis can be computed from a minimum subset of three
points from X matched against a minimum subset of three points from Y . The
sampling proceeds thus as follows:

1. Randomly draw a point triple x1,x2,x3 ∈ X;

2. Randomly draw a point triple y1,y2,y3 ∈ Y that is approximately con-
gruent to the triple x1,x2,x3 ∈ X;

3. Compute the rigid motion that aligns (x1,x2,x3) with (y1,y2,y3) in the
least-squares sense;

4. Compute and store the six parameters of the hypothetical motion.

Random drawing of approximately congruent point triples in step 2 of the sam-
pling procedure is efficiently implemented using a hash table of Y -point triples
indexed with the three X-point distances (‖x1 − x2‖, ‖x2 − x3‖, ‖x3 − x1‖)
as the key. Least-squares estimation of rigid motion in step 3 computes the
rotation R ∈ SO(3) and translation t ∈ R3 as

{R, t} = arg min
{R′,t′}∈ SE(3)

[
‖R′ x1 + t

′ − y1‖2

+ ‖R′ x2 + t
′ − y2‖2 + ‖R′x3 + t

′ − y3‖2
]
.

The special three-point method of Horn [1987] is used to obtain a closed-form
solution. The parametrisation of rigid motions chosen for sampling step 4 may
have an influence on the result. In fact, the parameter density from which
the samples are taken depends upon this choice. A parametrisation that is
consistent for clustering is used here, in the sense of Hillenbrand [2007].
By repeatedly executing the sampling procedure 1–4 above (in the order of 106

times), samples are obtained from the parameter density for the rigid alignment
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problem. This parameter density is similar in spirit to a posterior density, but
without assuming a probabilistic observation model.

The parameter samples can be stored in an array or a tree of bins. The sam-
pling stops when a significant cluster of samples has formed, as judged from
the bin counts. Then the location of maximum parameter density is searched
by repeatedly starting a mean-shift procedure [Fukunaga and Hostetler, 1975,
Comaniciu and Meer, 2002] from the centre of the bins with high parameter
counts. From all the local density maxima found through mean shift, the loca-
tion in the six-dimensional parameter space of the largest maximum is returned
as the motion estimate of a bone, in the following denoted as Re and te. Details
of the implementation are presented elsewhere [Hillenbrand and Fuchs, 2011].

The main sources of error in the procedure for estimating bone motion are

• the variation in bone geometry erroneously represented in the point sets
extracted from different images of the same bone, resulting from variation
in manual segmentation or dipolarity values computed from the images;

• the approximate rotational symmetry about the longitudinal axis of a
bone, especially in case of poor geometric representation lacking shape
details.

To get rid of grossly wrong motion estimates, an interactive cluster analysis
is performed on the estimated rotations. Making use of the stochastic na-
ture of the estimation algorithm, each motion estimate is repeated 100 times
with different subsets of the data being sampled, resulting in motion estimates
{Re1, te1} . . . {Re100, te100}. If the rotational distance between any two of the
100 motion estimates exceeds a threshold, clusters of rotation parameters are
identified and the correct cluster C ⊂ {1, . . . , 100} is selected through visual
inspection (Figure 3.2).

The rotational distance between two rotations is defined as the angle of a third
rotation that would have to be appended to the first rotation in order to make
it identical to the second rotation. It is calculated as follows:

RotationalDistance(R1, R2) = arccos

(
1

2

(
trace

(
R2R

−1
1

)
− 1
))

, (3.2)

where R1 and R2 are the rotation matrices of the first and second rotation.

The final rotation estimate R is determined as the rotation that minimises the
sum of squared rotational distances to all rotations in the cluster, that is, the
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Figure 3.2: Visual inspection of pose estimates. The rotational part of 100 randomly
repeated pose estimates is plotted in three dimensions as the product of rotation axis
and angle. In this example there are two distinct clusters. One element in each cluster
is inspected by regarding the more strongly curved side of the neighbouring bone (ar-
rows). The motion of the bottom right cluster element implies a large, anatomically
impossible, longitudinal rotation of the bones. Therefore the top left cluster is taken
as the correct cluster C. Reproduced from Stillfried et al. [2014].

mean rotation in the difference-rotation-angle metric,

R = argmin
R′ ∈ SO(3)

[∑
i∈C

RotationalDistance(R′, Rei)
2

]
. (3.3)

Likewise, the final translation estimate t is determined as the translation that
minimises the sum of squared Euclidean distances to all translations in the
cluster, that is, the ordinary mean value of valid translations,

t =
1

n

∑
i∈C
tcei, (3.4)

where n is the number of elements in the correct cluster C, and tcei is the i-th
translation estimate of the bone centroid. The translation estimate of the bone
centroid is calculated as follows:

tcei = Rei c+ tei − c,

where c is the bone centroid, that is, the mean of all points in X. If the correct
cluster contains less than ten elements, the respective bone pose is discarded
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from the modelling process. Furthermore, all pose estimates are checked opti-
cally and obviously wrong estimates are discarded.
A natural confidence weight of the final rotation estimates is obtained from the
variance of the sample mean values, that is,

σ2r =
1

n(n− 1)

n∑
i=1

RotationalDistance(R,Rei)
2. (3.5)

This confidence weight enters in the estimation of orientation of rotational axes
for the kinematic hand model below. Likewise, a confidence weight of the final
translation estimates is given by

σ2t =
1

n(n− 1)

n∑
i=1

‖t− tcei‖2, (3.6)

and used in the estimation of the position of rotational axes for the kinematic
hand model below.
The standard deviation of the rotation and translation estimate over the 100
repetitions with randomly permuted point sets, that is, the square root of the
variance described in Equations (3.5) and (3.6), is a measure of the repeatability
of the motion estimations.

List of postures

The postures of which MRI recordings are made are selected such that the RoM
of each joint is covered. They include the thumb–finger oppositions of the thumb
function test by Kapandji [1986], as well as variations of these. The complete
list of recorded postures is shown in Table 3.1, Figure 3.3 and Figure 3.4.
The list includes 51 postures. Since the aim of the kinematic modelling based
on these measurements is to recreate the active kinematics of the hand, six
postures that involve passive motion due to external forces are excluded, so
that 45 postures are used for the identification of joint axes.

Table 3.1: List of recorded hand postures

number description

1* opposition of finger tips of thumb and index finger
2 opposition of finger tips of thumb and middle finger
3 opposition of finger tips of thumb and ring finger
4 opposition of finger tips of thumb and little finger
5 opposition of finger nails of thumb and index finger
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Table 3.1: (continued)

number description

6* opposition of finger nails of thumb and middle finger
7 opposition of finger nails of thumb and ring finger
8 opposition of finger nails of thumb and little finger
9 flexion of thumb
10* adduction of thumb
11 flexion of PIP and DIP
12* extension of all joints (planar hand)
13 opposition of finger pads of thumb and index finger (flat

IP and DIP joints)
14 opposition of finger pads of thumb and middle finger

(flat IP and DIP joints)
15 opposition of finger pads of thumb and ring finger (flat

IP and DIP joints)
16* opposition of finger pads of thumb and little finger (flat

IP and DIP joints)
17* flexion of thumb
18* relaxed posture (reference posture)
19 maximum flexion of MCP and PIP with extended DIP
20 opposition of thumb and interdigital space between

DIP2 and DIP3
21 opposition of thumb and interdigital space between

DIP3 and DIP4
22* opposition of thumb and interdigital space between

DIP4 and DIP5
23* maximum flexion of PIP and DIP with extended MCP
24 opposition of thumb with index finger near the DIP2

joint
25 opposition of thumb with middle finger near the DIP3

joint
26* opposition of thumb with ring finger near the DIP4 joint
27 opposition of thumb with little finger near the DIP5

joint
28 opposition of thumb with index finger near the PIP2

joint
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Table 3.1: (continued)

number description

29* opposition of thumb with middle finger near the PIP3
joint

30 opposition of thumb with ring finger near the PIP4 joint
31 opposition of thumb with little finger near the PIP5 joint
32 opposition of thumb with index finger near the MCP2

joint
33 opposition of thumb with middle finger near the MCP3

joint
34 opposition of thumb with ring finger near the MCP4

joint
35 opposition of thumb with little finger near the MCP5

joint
36* flexion of MCP joints with extended PIP and DIP joints
37* extension of MCP joints
38 flexion of MCP1 joint
39 flexion of CMC1 joint
40* maximum extension of MCP1 joint
41* ulnar abduction of the MCP joints
42* radial abduction of the MCP joints
(43 passive dorsal flexion of the DIP joints)
44* palmar flexion of ulnar metacarpal bone (MC5) around

IMC4–5
45 holding a hammer
(46 holding a medium-sized cylindrical object while press-

ing)
(47 holding a medium-sized cylindrical object without press-

ing)
(48* holding a screw driver)
(49 holding a pen)
(50 holding a key)
51* lateral movement of the MCP1 joint in dorsal-ulnar di-

rection
* flexion of MCP2–5 while spreading the fingers
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Table 3.1: (continued)

number description

Notes: Postures in parentheses are not used for identifying the model
parameters, because they involve external forces on the fingers. The
postures marked with an asterisk (*) are also used with recordings of
another subject in Chapter 5 and Chapter 6.

The process of kinematic modelling is essentially a process of dimensionality
reduction. For example, consider a pair of bones that are connected by a joint.
The relative pose of the distal bone with respect to the proximal bone is generally
described by six variables that define its position and orientation in 3D space.
If it is possible to find a single rotation axis that appropriately describes the
movement of the distal bone with respect to the proximal bone, only a single
variable is necessary to describe its relative pose.
To properly understand the process of modelling, it is necessary to see the differ-
ence between static and dynamic parameters. In above example, the parameters
that describe the position and orientation of the rotation axis, the initial pose
of bone and the joint limits are static, which means that they do not change
during movement; the rotation angle is dynamic, which means that it changes
during movement.
The aim of kinematic modelling is to find a representation of posture that is
accurate, as well as generative. Accurate means that the modelled posture is
close to the real posture. Generative means that varying the dynamic parame-
ters within their allowed limits leads to postures that are close to real postures.
In the example, the general pose description with six parameters per rigid body
can be used to describe any measured pose with 100% accuracy. However, these
parameters may be varied in such a way that strange and unnatural poses are
generated. On the other hand, when the single-axis model is used, all poses
generated by varying the rotation angle within the joint limits are close to nat-
ural poses (even though there may be some residual difference). A further aim
is that the model is simple. Simplicity is primarily shown by a low number
of dynamic parameters; further by a low number of static parameters and by
other considerations such as that the model should be easily implementable in
a robot.
In this Chapter, different methods for kinematic hand modelling are presented.
Each of the modelling assumptions may introduce errors. The size of the errors
depends on the quality of the model, that is, how closely the model matches
reality.
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1. 2. 3.

4. 5. 6.

7. 8. 9.

10. 11. 12.

13. 14. 15.

16. 17. 18.

19. 20. 21.

22. 23. 24.

25. 26. 27.
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*

*

* * *

* *

*

Figure 3.3: The recorded hand postures (see Table 3.1). Postures 1–27. Adapted from
Stillfried [2009].
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28. 29. 30.

31. 32. 33.

34. 35. 36.

37. 38. 39.

40. 41. 42.

43. 44. 45.

46. 47. 48.

49. 50. 51.
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*

*
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Figure 3.4: The recorded hand postures (see Table 3.1). Postures 28–51. Adapted
from Stillfried [2009].
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3.1.2 Modelling assumptions

By making some assumptions, the optimisation problem may be simplified, it
may work with less samples, it may reflect more concentratedly the functionality
and the resulting model may be simpler. The assumptions need to be made
carefully, so that no large errors are introduced by false assumptions.

The first two assumptions that shall be made here is that the bones are rigid
bodies and that interesting aspects of hand functionality are reflected by the
movement of the bones. The first assumption is backed by the measured material
properties of the bone. Cortical bone is a quite stiff material with a Young’s
modulus of 4500–20.000N/mm2, depending on the direction of the force and
the apparent density of the cortical bone [Wirtz et al., 2000]. A large force of
200N on a small bone with 25mm2 cross-sectional area of cortical bone would
therefore compress the bone by only 0.04–0.18%. As for the second assumption,
the functional role of kinematics for mechanical interaction with the environment
is to properly position and orient the contact surfaces, so that appropriate forces
can be applied. The position and orientation of the contact surface, that is, the
skin, is primarily governed by the position and orientation of the underlying
bone.

The rigid bone is described by its pose in space (that is, the transformation from
the bone’s own coordinate system to an external coordinate system) and the
coordinates of its surface with respect to its own coordinate system. The poses
in space can be extracted from the MRI images as described in Section 3.1.1.

Thirdly it is assumed here that the joints that connect the bones behave as
serial rotation axes whose pose is fixed to the parent segment or parent axis.
There can be more than one axis per joint. This assumption is often made, and
it is supported by somewhat roughly circular cross sections of the joint surfaces
(Figure 3.5). Since the cross sections are not exactly circular, some modelling
error is made.

3.1.3 Single joint parameter identification

The advantage of modelling single joints is that it is conceptually and compu-
tationally simpler. The disadvantage, compared to modelling whole fingers or
hands, is that some information for identifying the parameters of the joints is
lost. When modelling a single joint, one segment is generally considered to be
stationary and the other segment is considered to be mobile. Whenever it is in-
convenient to mechanically fix one segment during measurement, alternatively
the full pose of one segment can be measured, and all measurements can be
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approximate approximate
flexion–extension plane ab-/adduction plane

CMC1

MCP1

IP1

Figure 3.5: MRI images of the three thumb joints in two orthogonal cross sections
each. The orange lines show the location of the other cross section of the same joint.
The joint surfaces are somewhat roughly circular in the planes in which the joint moves
(both planes in CMC1 and MCP1, only flexion–extension in IP1).
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transformed into a coordinate system rigidly attached to that segment. Let us,
without loss of generality, consider the proximal segment fixed and the distal
segment mobile:2

proxTdist(t) =
(
labTprox(t)

)−1
labTdist(t),

where labTdist(t) is the measured pose of the distal segment in the laboratory
coordinate system, (labTprox(t))

−1 is the inverse of the measured pose of the
proximal segment in the laboratory coordinate system, and proxTdist(t) is the
pose of the distal segment in the coordinate system of the proximal segment.
Similarly, if only the position labpdist of the distal segment is measured, the
position is transformed to the coordinate system of the proximal segment:

proxpdist(t) =
(
labTprox(t)

)−1
labpdist(t).

The general approach to joint model parameter identification is calculating mod-
elled segment poses using a set of static and dynamic parameters (forward kine-
matics) and iteratively optimising the parameters so that the distances between
the modelled segment poses and some measured segment poses are minimised.
Note that “distance” can refer to a translational distance as well as a rotational
distance. Any joint model can be used in this approach, as long as its forward
kinematics can be calculated. This approach was used, for example, by Sommer
and Miller [1980] to model a human wrist joint.

The forward kinematics function f(ξ, q) of a single joint generates a modelled
pose proxTdist,mod of the distal bone with respect to the proximal bone, depending
on the static parameters ξ and the dynamic parameters q:

proxTdist,mod = f(ξ, q).

The static and dynamic parameters are optimised to minimise the distance
between measured and modelled markers. The cost function ε is a weighted
combination of rotational and Euclidean distance:

{ξopt, qopt(t)} = argmin
ξ,q

(ε), (3.7)

2The left superscript before a vector denotes the coordinate system in which the coordinates
of the vector are given, for example, the coordinates of Av are given in coordinate system A.
The notation ATB denotes a transformation from coordinate system B to coordinate system
A, such that Av = ATB

Bv.
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with

ε = mean
t∈P

[
wt

∥∥∥proxTdist(t)(1:3,4) − f(ξ, q(t))(1:3,4)∥∥∥+
wrRotationalDistance

(
proxTdist(t)(1:3,1:3), f(ξ, q(t))(1:3,1:3)

)]
, (3.8)

where t is a time instant and P is the set of time instants in which postures are
measured. Since the Euclidean and rotational distances have different units, the
weighting factors wt and wr are used to explicitly set the weights of both types
of distances. The sub-vector T(1:3,4) of a transformation matrix T describes its
translational part and the sub-matrix T(1:3,1:3) describes the rotational part (for
the sub-matrix notation see Section Mathematical notation near the beginning
of the document).

Note that a simple mean of errors is used. While minimising the mean of squared
errors would give an optimal estimate in the case of normal distributions, it is
sensitive to outliers in case that the distribution is not exactly normal. The
simple mean of errors is used because it is more robust in this regard.

The optimisation was split into two parts—first the optimisation of the axis
orientations with the weight wt of the translational error set to zero and subse-
quently the optimisation of the axis positions with the weight wr of the rotational
error set to zero.

The choice of the model f(ξ, q) is not a trivial task. Often a single model is
used based on the experience of the experimenters. In [Sommer 3rd and Miller,
1980], the wrist is modelled by two serial, non-intersecting, non-orthogonal axes
of rotation.

In this optimisation problem, the dynamic parameters need to be optimised,
even though only the static parameters may be of interest. For the special cases
of a spherical joint (rotations around a single point) and a hinge joint (rotations
around a single axis) there are methods to find the optimal CoR and optimal
axis of rotation that do not require the optimisation of dynamic parameters
[Chang and Pollard, 2007a,b].

Details on the parameter identification of single joint models

The joint parameters (positions and orientations of the rotation axes) are identi-
fied on a joint-by-joint basis by numerically minimising the discrepancy between
the measured and modelled relative motion of the joint’s distal bone with respect
to the proximal bone. To calculate the relative motion, the absolute motion of
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the proximal bone is inversely applied to the absolute motion of the distal bone:

Rr = R
−1
p Rd (3.9)

and
tr = R

−1
p (cd + td − tp − cp) + cp − cd, (3.10)

where {Rr, tr} is the relative motion of the distal bone with respect to the
proximal bone, {Rp, tp} and {Rd, td} are the absolute motions of the proximal
and distal bone that result from the bone localisation (Section 3.1.1), and cp
and cd are the vectors of Cartesian coordinates of the centroids of the proximal
and distal bone.
In order to reduce the dimensionality of the search space, the identification of
the axis orientations and positions is split up into two steps. In the first step, the
axis orientations are identified by minimising the rotational distance between
the measured orientations and the modelled orientations.
The modelled orientation Rm of the bone is calculated as follows:

Rm =

na∏
k=1

Rot(ak, qk) (3.11)

where na ∈ {1, 2, 3} is the number of rotation axes of the joint, ak is the
orientation of the kth axis and qk is the rotation angle around the kth axis, and
Rot(·, ·) is the rotation matrix (Equation (1)). The position and orientation
vectors of the rotation axes are given in the coordinate system of the MRI
system, and with respect to the bones in the reference posture.
The orientations of the rotation axes and the rotation angles are identified by
numerically minimising the weighted mean square angular difference over all
postures:

(a1, . . . ,ana , q1, . . . , qnp
) =

argmin
(a′1,...,a

′
na ,q

′
1,...,q

′
np

)

 np∑
j=1

wrj RotationalDistance
(
Rrj , Rmj(a

′
1, . . . ,a

′
na
, q′j)

)2 ,
(3.12)

with
wrj =

1

σ2rpj + σ2rdj
(3.13)

where np is the number of postures, a1, . . . ,ana are the orientation vectors of
the rotation axes, q1, . . . , qnp

are the vectors of joint angles for each posture
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j ∈ {1, . . . , np}, where qj = (q1j , . . . , qnaj)
T contains the joint angles for each

rotation axis, wrj is the confidence weight due to the variances σ2rpj and σ2rdj
of the rotation estimates of the proximal and distal bone in posture j resulting
from the bone localisation (Section 3.1.1), RotationalDistance gives the angle
of the smallest rotation that needs to be added to one of the rotations to make
it equal to the other rotation, Rrj is the measured relative orientation of the
bone in posture j according to Equation (3.9) and Rmj is the modelled relative
orientation of the bone according to Equation (3.11).

The positions of the rotation axes are identified by minimising the mean squared
distance between the measured and modelled position of the bone centroid:

(p1, . . . ,pna
) = argmin

(p′1,,...,p
′
na

)

 np∑
j=1

wtj

∥∥tmj(p
′
1, . . . ,p

′
na
)− trj

∥∥2 , (3.14)

with

tmj(p
′
1) =

(
na∏
k=1

Rot(ak, qkj)

)
(cd − p′1) + p′1 − cd

for joints with intersecting axes,

tmj(p
′
1, . . . ,p

′
na
) =(

na∏
k=1

Rot(ak, qkj)

)
cd +

(
na∑
k=1

(k−1∏
l=1

Rot(al, qlj)−
k∏

l=1

Rot(al, qlj)

)
p′k

)
− cd

for joints with non-intersecting axes and

wtj =
1

σ2tpj + σ2tdj
, (3.15)

where p1, . . . ,pna
are the position vectors of the rotation axes, tmj are the

modelled translations of the bone centroid, trj are the measured translations of
the bone centroid, ak and qkj are the rotation axes and angles as derived from
Equation (3.12) and cd is the position vector of the distal bone centroid.

In order to perform the optimisations described in Equations (3.12) and (3.14),
the fminsearch function of the Matlab computation software is used, which
implements the Nelder-Mead simplex algorithm [1965]. The algorithm is called
with broadly different starting points to increase the chance of finding the global
optimum, and not only a local optimum. For Equation (3.12), a nested op-
timisation is conducted, with an outer optimisation for the axis orientations
a1, . . . ,ana . Within each iteration step of the outer optimisation, a number of np
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inner optimisations are carried out to find the optimum joint angles q1, . . . , qnp
.

For the outer optimisation, the axis orientations are parametrised by two spher-
ical coordinates (azimuth and elevation), in order to reduce the search space by
one dimension as compared to Cartesian coordinates for axis orientation.

Cross-validation of the modelling error

In order to check to what extent the results apply to the investigated hand in
general as opposed to being overfit to the investigated postures, a leave-one-out
cross-validation (LOOCV) is performed. For this, the parameters of the joints
are identified np times, with np being the number of measured bone poses,
where in each round one of the poses is left out. The joint parameters (axis
orientations and positions) resulting from each identification are used to move
the bone as close as possible to the omitted pose. The rotational and transla-
tional discrepancy between the modelled and measured bone pose is calculated,
and the weighted mean of rotational and translational discrepancies between
the modelled and measured bone poses is calculated.

3.1.4 Definition and selection of joint types

Joints with one, two, or three axes of rotation are considered. Two constraints
are selectively applied: that the axes intersect, and/or that the axes are per-
pendicular to each other. Figure 3.6 shows the joint types. For one-axis joints
the constraints (perpendicular and/or intersecting) do not make sense, so there
is one joint type 1a. For the two-axis joints, all combinations of constraints are
used, leading to four joint types 2oia, 2ia, 2ona and 2na.

In three-axis joints with intersecting axes, an optimisation of axis orientations
does not make sense, since any orientation of the distal bone can be achieved
with any combination of joint axes where the second axis is perpendicular to
both the first and third axis. So in the joint types 3oia and 3ona, the axis
orientations are predefined and only the axis positions are optimised.3 The
joint type 2cia is a special type of a two-axis joint with one DoF, where the
second axis is located along the distal bone and its rotation angle is coupled to
the rotation angle of the first axis.

The joint types are selected according to the following criteria: accuracy, sim-
plicity and generativeness.

3In fact, the orientation of the joint axes does influence the position of the distal bone if
the axes are non-intersecting. So in future work, a third three-axis joint type “3na” with free,
non-intersecting axes should be added for completeness.
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Figure 3.6: Joint types used in the presented method. From left to right: Hinge joint
(one axis, 1a), hinge joint with combined longitudinal rotation (two coupled intersecting
axes, 2cia), condyloid joint (two orthogonal/oblique intersecting axes, 2oia/2ia), sad-
dle joint (two orthogonal/oblique non-intersecting axes, 2ona/2na), ball joint (three
orthogonal intersecting axes, 3oia) and 3-DoF joint with orthogonal non-intersecting
axes (3ona, combination of a saddle and a pivot joint). Reproduced from [Stillfried et al.,
2014], with drawings from http://en.wikipedia.org/wiki/Hinge_joint.

Table 3.2: Complexity of the joint types in terms of dynamic and static parameters.

no. of minimal no. of
joint type dynamic parameters static parameters

1a 1 4
2cia 1 5
2oia 2 6
2ona 2 7
2ia 2 7
2na 2 8
3oia 3 3
3ona 3 6

http://en.wikipedia.org/wiki/Hinge_joint
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Accuracy can simply be calculated as the differences between the measured poses
and closest-possible modelled poses, which corresponds to the cost function in
Equation (3.7), where a lower mean weighted residual error ε means higher
accuracy.
An approximate ranking of complexity is achieved by sorting the joint types pri-
marily according to the number of dynamic parameters (number of DoF) that
are needed to describe their movements. The DoF correspond to the minimum
number of actuators that are required to move the joint, and generally, a device
with more actuators is more complex than a device with less actuators. Joints
with the same number of DoF are ranked by the number of static parameters.
The static parameters define the concrete design of the joint. Less static pa-
rameters mean firstly that less design decisions need to be taken. Secondly,
constraining the axis orientations to orthogonal, which reduced the number of
static parameters, leads to a joint type which is some cases easier to imple-
ment technically than a joint with arbitrary axis orientations. Table 3.2 shows
the measures of complexity of the joint types in terms of dynamic and static
parameters.
It is difficult to decide whether a joint model is generative, that is, whether it
only produces realistic postures. One method to judge this question is to gener-
ate movements and intuitively decide whether they look realistic. Furthermore,
the generativeness is closely related to the complexity of the joint type: a joint
with more dynamic parameters provides more possibilities for unnatural poses.
There is typically a trade-off between the accuracy of a joint on the one hand and
simplicity and generativeness on the other hand. The trade-off is visualised in
a trade-off curve, which connects those points in which improving one criterion
necessarily leads to worsening of another criterion. An example of a trade-off
curve is shown in Figure 3.7.

3.2 Results

The following paragraphs describe results regarding the selection of joint types
and the amount of modelling error.

3.2.1 Repeatability of the bone registration with different sam-
pling of points

The repeatability of the motion estimations is examined by repeating it 100
times with randomly permuted point sets (Section 3.1.1). In cases with very
different clusters of pose estimates, the correct clusters were selected manually.
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Figure 3.7: Trade-off curve of different joint types for the PIP3 joint. In the abscissa,
the accuracy is plotted in terms of ε (Equation (3.8)) with wt = 0.5mm−1 and wr =
0.5degrees−1. In the ordinate, the complexity is plotted in terms of primarily dynamic
parameters nd and secondarily static parameters ns. On both axes, lower values are
better. The joint types 2ia and 2na are in the so-called inefficient region: their accuracy
criterion can be improved without worsening their complexity criterion.
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Table 3.3: Standard deviation over the correct repetitions (up to 100) of the motion
estimation for the rotational (σr) and translational (σt) part. The minimum, maximum
and mean over all n usable images are given. Those images where none of the repetitions
were correct were not usable.

σr (◦) σt (mm)

bone min max mean min max mean n

MC1 1.0 5.3 2.9 0.1 0.2 0.1 48
PP1 1.6 5.7 3.2 0.1 0.3 0.1 47
PD1 1.2 5.4 2.2 0.1 0.3 0.1 43

MC2 1.7 8.0 3.4 0.1 0.4 0.2 50
PP2 1.0 4.5 2.8 0.1 0.1 0.1 42
PM2 1.2 3.7 2.2 0.0 0.1 0.1 39
PD2 2.1 7.6 3.9 0.0 0.5 0.1 33

MC3 1.1 4.9 2.6 0.1 0.3 0.2 44
PP3 1.3 5.8 3.2 0.1 0.1 0.1 42
PM3 1.0 2.9 1.7 0.0 0.1 0.1 39
PD3 1.9 5.9 2.9 0.1 0.7 0.1 37

MC4 1.4 7.6 3.5 0.1 0.2 0.1 44
PP4 0.9 8.9 3.4 0.1 0.2 0.1 42
PM4 1.2 3.5 2.4 0.0 0.2 0.1 38
PD4 1.2 4.3 2.6 0.0 0.2 0.1 36

MC5 1.4 11.2 4.1 0.1 0.4 0.1 44
PP5 1.5 7.1 3.7 0.0 0.1 0.1 43
PM5 1.0 4.3 2.8 0.0 0.1 0.1 39
PD5 1.7 9.7 3.4 0.0 0.1 0.0 35

all 0.9 11.2 3.0 0.0 0.7 0.1 39.2

The standard deviation of the rotation and translation estimate is given in Table
3.3 as the square root of the variance described in Equations (3.5) and (3.6).

The rotational standard deviation σr ranges from 0.9◦ to 11.2◦, with a mean of
3.0◦, and the translational standard deviation σt ranges from less than 0.05mm
to 0.5mm, with a mean of 0.1mm, depending on the bone and the posture. The
values for all bones are given in Table 3.3.

3.2.2 Joint types

The main results of the presented method are movement models of the analysed
human hand. The joint types of the movement model represent a compromise
between accuracy, simplicity and generativeness. In Figure 3.7, the trade-off
curve of different joint types is shown at the example of the PIP3 joint. In
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the abscissa, the accuracy is plotted in terms of ε (Equation (3.8)) with wt =

0.5mm−1 and wr = 0.5 degrees−1. In the ordinate, the complexity is plotted in
terms of primarily dynamic parameters and secondarily static parameters.
In the example, the non-orthogonal joint types 2ia and 2na are not on the trade-
off curve, because the criterion of accuracy can be improved without worsening
the criterion of complexity by moving to 2oia or 2ona.
Depending on the desired accuracy in terms of discrepancy between modelled
and measured bone poses, hand models with different complexity are generated.
In Figure 3.8, different hand models from simple and less accurate (top) to
complex and more accurate (bottom) are presented.
In the simple model, four joints are modelled as 2-DoF universal joints: thumb,
index, ring and little finger MCP. The other joints are modelled as 1-DoF hinge
joints.
The intermediately complex hand model (middle) differs from the simple one
by providing two DoF each to MCP3 and CMC1. The joint axes of MCP3
intersect, while the ones of CMC1 do not.
The most complex model (bottom) models CMC1 with three non-intersecting
axes, with the third one allowing a longitudinal rotation (pro-/supination) of
MC1. A longitudinal rotation is also enabled in DIP2 and PIP5, while PIP2
allows a combined longitudinal rotation and sidewards movement. The little
finger DIP joint allows a longitudinal rotation only in an extended position.
Additional DoF for sidewards movement are found in DIP2, DIP3, DIP4 and
IP1.
The weighted-mean rotational deviation per joint ranges from 1.6◦ in IMC3 to
5.5◦ in IP1. The maximum rotational deviation in a single hand posture is 17.2◦

in CMC1. Weighted-mean translational deviation ranges from 0.9mm (PIP4)
to 2.6mm (CMC1), and the maximum translational deviation in a single hand
posture is 7.2mm, and also occurs in CMC1.
Table 3.4 shows the residual error of different joint types, as well as their range
of motion and joint axis inclinations. The examples in Figure 3.9 are supposed
to give the reader a feeling of these values.

3.2.3 Cross-validation

For most joints, there is only a slight increase of the rotational and translational
modelling error from the whole data mean error to the LOOCV mean error. For
example, in the thumbMCP joint, the mean rotational error when using all poses
is 2.5◦, and the mean rotational error of the LOOCV is 2.9◦. In the same joint,
the mean translational error is 1.2mm when taking into account all poses and
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Figure 3.8: Variants of the kinematic model at different accuracy constraints, dorsal
view (left) and radial view (right). In the colour version, the changes with respect to
the next simpler variant are marked in red.
Top: 22 DoF, rotational deviation < 9◦, translational deviation < 6mm. Middle: 24
DoF, rotational deviation < 6◦, translational deviation < 3mm. (This is the hand
model that shows the Chapter numbers.) Bottom: 33 DoF, rotational deviation <
3◦, translational deviation < 2mm. In joints with more than one axis, the first one is
marked “1”, the second one “2”, and, if existing, the third one “3”. Adapted from Stillfried
et al. [2014].
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1.3mm in the LOOCV analysis. This means that the results are generally valid
for the investigated individual hand and do not depend on certain postures.
All differences for the translational error are within 0.2mm and all differences
for the rotational error are within 1.0◦ except for the thumb interphalangeal
joint, where the difference is 1.2◦ and the little finger metacarpophalangeal
joint, where it is 3.0◦. In these exceptional cases the joint parameters depend
strongly on the selection of the subset of bone poses. This means that there
are single extreme poses is the data that are not adequately represented by the
other poses. The results are given in detail in Table 3.4.

Table 3.4: Properties of the 22-, 24- and 33-DoF models (Figure 3.8): joint name,
joint type, weighted mean rotational (dr) and translational error (dt) on the whole
data (all) and from the LOOCV, RoM, and inclination of the rotation axis in 1-DoF
interphalangeal joints. Inclination is the angle between the rotation axis and the plane
perpendicular to the longitudinal axis of the proximal bone. For the joint type abbre-
viations see Figure 3.6.

joint joint mean(dr) mean(dt) axis RoM inclination
name type all LOOCV all LOOCV no.

CMC1 1a 7.8◦ 8.1◦ 4.9mm 4.9mm 1 75.1◦

CMC1 2ona 2.9◦ 3.2◦ 2.1mm 2.2mm
1 60.1◦

2 64.4◦

CMC1 3ona 0.0◦ 0.0◦ 1.3mm 1.3mm
1 46.9◦

2 59.0◦

3 58.1◦

MCP1 2oia 2.5◦ 2.9◦ 1.2mm 1.3mm
1 92.5◦

2 52.0◦

IP1 1a 4.8◦ 5.0◦ 1.0mm 1.0mm 1 103.1◦ 2.0◦ proximal

IP1 2oia 2.1◦ 3.3◦ 0.9mm 0.9mm
1 103.0◦

2 18.2◦

MCP2 2oia 2.8◦ 3.2◦ 1.2mm 1.3mm
1 110.3◦

2 43.3◦

PIP2 1a 3.9◦ 4.0◦ 0.8mm 0.8mm 1 121.1◦ 7.3◦ proximal

PIP2 2oia 1.1◦ 1.3◦ 0.7mm 0.7mm
1 121.3◦

2 24.3◦

DIP2 1a 4.5◦ 4.7◦ 0.9mm 0.9mm 1 101.0◦ 4.4◦ proximal

DIP2 3oia 0.0◦ 0.0◦ 0.8mm 0.8mm
1 16.9◦

2 100.7◦

3 31.2◦

IMC3 1a 1.6◦ 1.6◦ 0.9mm 0.9mm 1 11.5◦

MCP3 1a 7.5◦ 7.8◦ 3.0mm 3.2mm 1 119.7◦
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Table 3.4: (continued)

joint joint mean(dr) mean(dt) axis RoM inclination
name type all LOOCV all LOOCV no.

MCP3 2oia 1.6◦ 2.1◦ 1.0mm 1.2mm
1 119.0◦

2 41.1◦

PIP3 1a 2.9◦ 3.0◦ 0.9mm 0.9mm 1 122.8◦ 2.7◦ distal

DIP3 1a 4.7◦ 4.9◦ 1.1mm 1.1mm 1 110.4◦ 2.5◦ proximal

DIP3 2oia 2.7◦ 3.5◦ 1.0mm 1.1mm
1 23.4◦

2 109.8◦

IMC4 1a 1.6◦ 1.6◦ 0.8mm 0.8mm 1 15.2◦

MCP4 2oia 2.8◦ 3.2◦ 1.5mm 1.6mm
1 127.5◦

2 38.5◦

PIP4 1a 2.5◦ 2.7◦ 0.7mm 0.7mm 1 123.7◦ 8.1◦ distal

DIP4 1a 3.6◦ 3.7◦ 0.6mm 0.6mm 1 93.2◦ 1.9◦ distal

DIP4 2oia 2.6◦ 3.0◦ 0.5mm 0.6mm
1 93.3◦

2 8.3◦

IMC5 1a 2.2◦ 2.3◦ 0.9mm 1.0mm 1 22.0◦

MCP5 2oia 2.8◦ 5.8◦ 1.5mm 1.7mm
1 46.9◦

2 147.1◦

PIP5 1a 4.7◦ 4.9◦ 0.8mm 0.8mm 1 118.9◦ 2.9◦ distal

PIP5 2oia 1.3◦ 2.3◦ 0.8mm 0.8mm
1 118.9◦

2 17.5◦

DIP5 1a 5.6◦ 5.9◦ 0.8mm 0.8mm 1 92.1◦ 13.3◦ distal

DIP5 2oia 2.5◦ 2.9◦ 0.7mm 0.7mm
1 39.1◦

2 90.1◦

3.3 Discussion

A work flow for creating a kinematic hand model from MRI measurements
was presented. It includes the selection and recording of hand postures, the
segmentation of the 3D volumes of the bones, the creation and registration of
bone point clouds, a manual selection in the case of ambiguous registration, an
optimisation of the static and dynamic joint parameters and the selection of the
appropriate joint types.
While 45 hand postures were used for the identification of the axis parameters,
some of them were rather similar. For example many of the oppositions of the
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Figure 3.9: Comparison of measured (bright) and modelled (dark) bone poses in
several postures. Top left: Pose of the bone MC4 relative to MC3 in posture 36. The
rotational discrepancy is 1.6◦ and the translational discrepancy is 1.0mm. The arrow
is the rotation axis of the modelled IMC4 joint that connects MC3 and MC4. Top
middle: PD1 relative to PP1 in posture 1. Discrepancy: 5.5◦, 1.4mm. IP1 joint. Top
right: MC1 relative to MC2 in posture 29. Discrepancy: 17.2◦, 6.4mm. CMC1 joint.
Bottom left: MC4 relative to PP4. Discrepancy: 2.6◦, 0.9mm. PIP4 joint. Bottom
middle: MC1 relative to MC2 in posture 24. Discrepancy: 5.5◦, 2.6mm. Bottom right:
MC1 relative to MC2 in posture 35. Discrepancy: 5.1◦, 7.2mm.
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thumb with the fingers in the Kapandji test involve only small movements in
the thumb and very similar finger postures. Some of them might be omitted in
future recordings in order to save costs and effort.

Especially the segmentation of the MRI images is labour-intensive, with a well-
trained operator taking one to three hours to segment all the bones of one
image. Possibly some of the segmentation can be automated (see for example
Rusu [2012]), but MRI poses the difficulty that the grey value is not absolutely
correlated to the tissue type, but rather that the contrast to the surrounding
tissue needs to be considered.

The selection of the joint types depending on the limit on the mean discrepancy
between measured and modelled bone poses showed interesting results. For
example, with a limit of 9◦ and 6mm, both the thumb CMC joint and the
middle finger MCP joint could be modelled with only one DoF.

It seems that the second DoF in the metacarpophalangeal (MCP) joint of the
thumb is more important than the second DoF in the carpometacarpal (CMC)
joint. This is in contrast to many robotic hands, which implement two DoF at
the base joint and only one DoF at the other joints of the thumb.

It also seems that the abduction/adduction DoF of the middle finger is not as
important as those of the of the index, ring and little finger. Interestingly, the
software that is shipped with the CyberGlove data glove also models the middle
finger without an abduction/adduction DoF.

Cerveri et al. [2008] did a similar comparison for the CMC1 joint based on
MoCap data. Their RMSE translational discrepancy of the marker positions
over 10 subjects and a large set of postures were 2.0mm for using the 2na joint
type and 3.7mm using the 3oia joint type during a circumduction movement.

These results may provide possibilities to improve the dexterity or save an ac-
tuator in a robotic hand. However, the results also depend on the recorded
postures. While care was taken to include the whole range of motion of each
joint in the set of postures, DoF that are excited more automatically obtain a
higher weighting in the calculation of the mean discrepancy. This dependency
of the result on the selected postures should be kept in mind when designing
a robotic hand for a special purpose. All of the important postures that the
robotic hand is supposed to support should be represented in the recorded pos-
tures. A possible enhancement of the joint type selection would be to introduce
different weights for selected postures in order to reflect their importance for
the tasks that the robotic hand should fulfill.

Other enhancements of the method might include a test of leaving out some
joints entirely (for example, the palm joints), and calculating the discrepancies
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between whole finger or hand postures instead of single joints. However, due to
the combinatorics, the lists of joint types per joint should be limited, in order
to avoid excessive computation times.
There are six sources for errors in the kinematic modelling process based on
MRI:

1. selection of postures,

2. MRI acquisition,

3. segmentation,

4. motion estimation,

5. joint definition, and

6. joint parameter identification.

It is impossible to consider all possible postures of each joint as they are infinite.
Ideal, therefore, would be a very dense sampling of postures during a large
number of different movements. This is not possible in MRI due to cost and
time constraints. Hand postures for this work are selected so that for each
joint, the extremes and some intermediate positions are covered. The selection
of postures influences the resulting model in the way that multiple recordings
of similar joint postures assign them a greater weight compared to postures
that occur only once. A possible overfit to the selected postures is detected by
cross-validation of the results, for example, by LOOCV. The combined error of
steps 2 to 6 is represented by the mean rotational and translational deviation
between modelled and measured poses in Table 3.4, columns 3–6. The modelling
error introduced by the choice of postures (step 1) is reflected by the difference
between the overall error (columns 3 and 5) and the LOOCV error (columns 4
and 6).
In MRI acquisition, same tissue can be represented by different grey values.
Artefacts such as missing parts, motion artefacts, artefacts due to the surround-
ing tissue and possibly distortions can occur. A discretisation error occurs due
to the spacial resolution of (0.76mm)3.
In the segmentation process, the segmented shape depends on the way the
operator defines the grey value thresholds and manually refines the selection.
The combined error of MRI acquisition and segmentation is illustrated by the
distributions of grey value and segmented volume (Figures 3.10 and 3.11).
An attempt was made at measuring the error of the MRI image acquisition by
taking images of an animal bone without surrounding tissue, in order to discard
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Figure 3.10: Histograms of the grey value distributions of middle finger medial pha-
lanx in different segmented MRI images. Three clearly different examples are high-
lighted. Of these the central sagittal slice of the MRI image is shown. Reproduced from
Stillfried et al. [2014].

Figure 3.11: Histogram of the segmented volumes of the middle finger medial phalanx
in different MRI images. Surface renderings of four examples are shown, with the image
numbers and volumes in number of voxels. Reproduced from Stillfried et al. [2014].
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the need for segmentation. However, the images showed hardly any signal, which
might be due to the missing surrounding tissue or to a lack of humidity within
the bone.
The motion estimation error depends on the quality of the segmented point
clouds and the robustness of the algorithm with respect to differences in shape
and grey value distribution. The combined error of steps 2 to 4 is partly ex-
pressed by the repeatability values in Table 3.3, which however do not reflect a
potential bias.
In this work, joints are modelled as rotational joints with constant parameters.
In the case of a 1-DoF joint, this corresponds to rigid joint surfaces with per-
fectly circular cross-sections orthogonal to the joint axis. The 3-DoF joint with
intersecting axes would be ideally represented by spherical joint surfaces. These
are simplifications of the human joints with elastic cartilage and more complex
surfaces.
The parameters of the defined joints are identified by numerical optimisations
using the Nelder–Mead simplex algorithm. In non-convex optimisation problems
it can happen that the optimiser finds a local optimum instead of the global
optimum. The trade-off curve of the PIP3 joint (Figure 3.8) reveals a local
optimum problem when optimising Equation (3.7): an ideal optimiser of 2ia
and 2na should have found at least the orthogonal axes (2oia or 2ona) as a
special case. Due to local optima, the result of the parameter identification may
be sensitive to the optimisation starting point. Therefore, three equally spaced
starting points for each axis were used. Some of the results were influenced
by the starting point while others were not. For example, the parameters of
the CMC1 joint (2ona) were optimised with three different starting points for
each of the two axis orientations and three different starting points for the axis
offset. The results are slightly sensitive to the axis orientation starting points,
with the rotational error ranging from 3.0◦ to 3.2◦ and the translational error
ranging from 2.1mm to 4.0mm. The variation of the axis offset starting point
has no effect on the results. In some other joints, for example the IP1 joint (1a),
optimisation starting points have no effect on the result, with a rotational error
of 4.8◦ and a translational error of 1.0mm for all starting points.
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4
Hand models for grasp simulation

The designer of a robotic hand is faced with the question, among others, how
many axes of rotation the robotic hand should have, and how they should be
placed and oriented. For anthropomorphic hands, it is interesting what the
functional consequences of the axis locations in the human hand are.
Testing hand models with different number and placement of rotation axes in
simulation may save costly iterations in hardware. In this Chapter, such sim-
ulations are demonstrated at the example of the three human hand models
with different thumb configurations and one robotic hand model performing six
prescribed grasps.

4.1 Methods

In this Section, the hand models and prescribed grasps are presented and the
functionality of the grasp simulation is explained. Furthermore, the use of one
of the hand models in the simulation of an astronaut is described.

4.1.1 Grasp simulations

The human hand models are based on MRI images of the hand of one 29-
year-old female subject [Stillfried et al., 2014] (Chapter 3). Three variants are
used: The first model has 22 DoF, where the thumb CMC joint has two non-
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intersecting non-orthogonal axes, the MCP joints of thumb and fingers have two
intersecting orthogonal axes each and the remaining joints have one axis each,
including one joint between the ring and little finger MC bone (Figure 4.1a).
The second model is the same as the first one except that the joint axes of
the thumb CMC joint are orthogonal, since orthogonal axes are probably more
easily copied in robotic hands (Figure 4.1b). The third model is the same as
the first one except for the thumb MCP joint, which has only one axis, which
is another simplification often found in robotic hands (Figure 4.1c).

The robotic hand model is a model of the DLR/HIT Hand II [Liu et al., 2008].
It has 15 DoF: one for ab-/adduction and two for flexion of MCP and coupled
PIP and DIP joints, in each of five identical fingers.

Grasp experiments are carried out using a graphical user interface (GUI) devel-
oped by Theodoros Stouraitis. The GUI is based on OpenRAVE. In each grasp
experiment, a pair of a hand and an object is loaded, out of four hand models
and six object models, respectively. The pose of the hand with respect to the
object is manually adapted for each desired grasp, such that a feasible grasping
pose for the hand is obtained. The joint angles are manually changed to bring
the fingers into the desired posture close to the object, so as to generate the
desired hand preshape. Subsequently the joint angles are automatically driven
until finger surfaces contact the object. The contact points and normals are re-
trieved and it is tested whether force closure is possible with the given grasping
configuration.

The force closure criterion is achieved when the contact forces are able to balance
finite forces and torques applied to the object in any direction. The forces are
considered to always lie within the friction cone of each point. For determining
the angle of the friction cones to the normal vectors, a static friction coefficient
of 0.4 is assumed.

In the case of a successful force closure, a grasp score is calculated. For this, the
force–torque wrenches on the centre of the object are calculated. The wrenches
result from assumed forces with a magnitude of 1 (unit forces) along the edges
of the discretised friction cones at the contact points. The grasp score is defined
as the volume of the convex hull that spans over the wrenches. The distances
used for calculating the torques are scaled by the maximum position coordinate
of the grasp locations:

GraspScore = Volume

(
ConvexHull

(
f i,j

(rCOM,i/xmax)× f i,j

))
, (4.1)

where f i,j is the j-th unit force at contact location i, rCOM,i is the vector from



4.1. METHODS 59

a. b.

c.

Figure 4.1: The kinematics of the three human hand models that are compared in
the grasp simulations. a. 22-DoF model where the CMC1 joint is of type 2na and
the MCP1 joint is of type 2oia. b. 22-DoF, CMC1:2ona, MCP1:2oia. c. 21-DoF,
CMC1:2na, MCP1:1a
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the centre of mass to the contact location i, and xmax is the maximum position
coordinate of all grasp locations.
Six different grasps are tested: power grasps of a small and a large elliptical
cylinder; a precision grasp of a sphere; a grasp of a mug with two fingers through
the handle and the thumb on top of the handle; the grasp of a ballpoint pen
where the thumb is in a suitable position to press the retraction button; and the
grasp of a power drill where the index finger is in a suitable position to press the
trigger. The grasps are inspired by typical human grasps from the taxonomy by
Cutkosky [1989] (Figure 4.2). In order to increase the similarity to the human
grasps and to make the grasp description more specific, the following constraints
are introduced: In the grasps of the cylinders and the power drill, the object
shall touch the palm. In the grasps of the sphere, pen and mug, palm contact
shall be avoided.
The grasp of the large cylinder with the second hand model (22-DoF and orthog-
onal axes) and with the DLR/HIT Hand II model is simulated by five operators.
The differences between the mean grasp scores of both models are statistically
analysed using a repeated-measures one-factor analysis of variance (ANOVA)
[Salarian, 2008].

4.1.2 Astronaut hand simulation for exoskeleton design

The hand model created in this thesis is also used in STAMAS [2013], an EC-
funded project that investigates the use of smart materials in space applications,
as part of the master’s thesis of González Camarero [2014]. One of the sub
projects is the creation of a hand exoskeleton device that shall help astronauts
to perform tasks during extra-vehicular activity (EVA). These tasks are partic-
ularly stressful for the astronaut, because the pressurised gloves that they wear
during EVA impose additional effort during grasps.
The hand model is used for calculating the force vectors that the external device
applies on the glove and the hand, and to visualise the system. The goal is a
simulation of the astronaut, glove and support system for evaluating designs
before manufacture.

4.2 Results

As expected, it was possible to achieve power grasps with most of the hand
model–object combinations. The results are shown in Figure 4.3.
By this experiment, no difference could be identified between the different sim-
plifications of the human hand model.
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Figure 4.2: The partial grasp taxonomy by Cutkosky [1989]. The grasp of the small
and large cylinder correspond to the Medium Wrap and Heavy Wrap (Large Diameter)
grasps, the Precision Grasp of a sphere is part of the taxonomy, the grasp of the mug
is a special case, possibly represented by a combination of the Thumb–2 Finger grasp
and the Lateral Pinch grasp, the grasp of the ballpoint pen is a Light Tool grasp
augmented by a manipulating thumb and power drill grasp is a Heavy Wrap (Large
Diameter) grasp augmented by a manipulating index finger. Adapted from Cutkosky
[1989] c©1989 IEEE (ovals added).
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a. Human 22 DoF, non-orthogonal thumb CMC:

FC, 0.08 FC, 0.17 FC, 0.24 FC, 0.01 FC, 0.01 FC, 0.04

b. Human 22 DoF, orthogonal thumb CMC:

FC, 0.08 FC, 0.14 FC, 0.22 FC, 0.02 FC, 0.01 FC, 0.05

c. Human 21 DoF, non-orthogonal thumb CMC:

FC, 0.08 FC, 0.13 FC, 0.16 FC, 0.01 FC, 0.02 FC, 0.06

d. DLR/HIT Hand II:

FC, 0.02 FC, 0.07 FC, 0.13 FC, 0.01 no FC FC, 0.01

FC,
(< 0.005)

Figure 4.3: Results of the simulated grasp experiments of a human hand model and
several artificial hand models grasping a small and large elliptical cylinder, a sphere, a
mug, a pen and an electric screwdriver. Grasps in which force closure is achieved are
marked with the letters “FC” and the grasp score is given. For the definition of the
grasp score, see the text in Section 4.1.1 and Equation (4.1). Note that the grasp of
the mug by the robotic hand would be extremely difficult to achieve with a real robot,
because the gaps between finger and mug are extremely small.
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Operator 1 Operator 2 Operator 3 Operator 4 Operator 5

FC, 0.17 FC, 0.13 FC, 0.19 FC, 0.15 FC, 0.17

FC, 0.04 FC, 0.05 FC, 0.11 FC, 0.06 FC, 0.04

Figure 4.4: Simulated grasps of the large cylinder by five operators. There is some
variation of the grasp score between the operators, but there is a significant difference
between the mean grasp scores of the two hand models. FC: force closure.

The DLR/HIT Hand II is also able to perform all six grasps. An exception is
the pen grasp. The DLR/HIT Hand II achieves a power grasp of the pen with
an oblique but possibly functional position of the thumb tip on the retraction
button. However, the grasp is different from the grasp usually applied by hu-
mans. Whereas humans usually hold the pen between the PP and the PD of
each finger in order to work the button with the thumb, the DLR/HIT Hand II
needs to hold the pen between the palm and the PD of only ring and middle
finger (see the respective grasp in Figure 4.3).
The grasp of the large cylinder with the DLR/HIT Hand II model and with the
human hand model with 22 DoF and orthogonal thumb CMC axes was simulated
by five operators. The results are shown in Figure 4.4. The mean±standard
deviation (SD) grasp score over all operators is 0.16±0.02 for the human hand
model and 0.06±0.03 for the robotic hand model. The results of the ANOVA
show a statistically significant difference of the mean grasp scores (p < 0.001).

4.3 Discussion

Using the grasp simulations, it was not possible to find any substantial difference
between the different thumb models (4 or 5 DoF, orthogonal or non-orthogonal
axes). However, the robotic hand model was not able to hold one of the six
objects (the pen) using the prescribed grasp type. Furthermore, the grasp scores
for the human hand models were mostly higher than the ones for the robotic
hand model.
A possible explanation for the fact that the DLR/HIT Hand II cannot hold the
pen between PP and PD is that the finger segments are quite thick in relation
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a. b.

Figure 4.5: Grasp of a pen between the phalanges of a finger. a. Attempted grasp by
the DLR/HIT Hand II. The angles of the the PP and the PD are such that the normals
point away from the PM. There are no grasp forces (arrows) within the friction cones
that can balance each other (dotted lines). b. Successful grasp by the human hand
model. While still pointing away from the PM, the angle between the normals of the
PP and the PD is much smaller, so that forces within the friction cones can be found
that balance each other.

to their length. Therefore, when trying to hold the pen between the PP and
the PD, the closing motion is stopped early by the pen, so that the surface
normals of the PP and the PD point away from the PM. This means that
the normal forces drive the pen away from the PM. The only possibility for
keeping the pen close to the PM is given by the friction forces. However, with
the assumed friction coefficient, they are too low (Figure 4.5). This limitation
does not only apply to the grasp of the pen, but to all grasps of the type Light
Tool (Figure 4.2).
The reason that only ring and little finger are used in the alternative grasp of
the pen is that the abduction range of the thumb is small compared to the size
of the hand, so that the button of the pen needs to be close to the middle finger
so that it is reachable by the thumb.
Even though not all grasps can be achieved, with some creativity, other grasps
can be found that fulfil the same function.
A possible explanation for the higher grasp scores of the human hand model
is that it has more DoF (human: 22 DoF, robot: 13 DoF). Therefore, more
contact points can be obtained, for example, at all three phalanges. Since
the grasp simulation assumes unit forces at each contact location, the volume
spanned by the force–torque wrenches can be higher.
A limitation of the grasp simulations is that the tissue softness is not modelled.
The softness of the tissue enables much larger contact areas and more wide-
spread contact points than the rigid contact, which increases the stability of the
grasp. On the downside, the soft tissue could lead to a lower grasp stiffness in
the face of external perturbations.
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A further limitation is that unit forces are assumed at each contact location
instead of the real force capabilities. Because of both limitations, the calculated
grasp score should not be treated with too much of importance.
The results of the grasp simulations contain a subjective element, because the
grasps are pre-shaped manually by a human operator. Repeated grasps of one
object with five operators show that there are indeed differences between the
operators. However, the differences between the operators are small in compar-
ison to the differences between the hand models. Therefore, the subjectivity
does not destroy the ability of the grasp score to roughly indicate the grasp
stability of hand model–object combinations.
In summary, an application of an MRI-based hand model has been shown that
takes advantage of the joint axes which were optimised in the modelling process
Chapter 3 as well as of the surface geometries extracted from one of the MRI
images.
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5
Comparison of MRI and MoCap for hand

modelling

A common method for measuring hand and finger postures is optical surface
marker tracking, where markers are attached to the skin and the fingernails
of the subject’s fingers and hand. The workspace is surrounded by multiple
cameras, and the marker positions are triangulated from the camera images.
Often the markers are covered with a retro-reflective layer and the cameras are
equipped with an infra-red light source for a high contrast between the markers
and the background.

The advantages of optical tracking over MRI are that the equipment is much
more affordable, and the acquisition times are not as high: while an MRI record-
ing of a hand with a resolution of 1mm3 per voxel takes about two to three
minutes, optical tracking systems typically record at least 100 frames per sec-
ond. Furthermore, the computation of the pose of a segment is very efficient
with MoCap and can be done online (for example, with the closed-form solu-
tion by Horn [1987]), whereas the registration of the bones from MRI images is
computationally intensive.

On the downside, MoCap of surface markers measures the movement of the
skin and not of the bones. Since the skin is soft and elastic, it does not fit well
with the rigid-body approach that is commonly used with skeletal modelling.
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Therefore, the skin movement with respect to the bone is often ignored and the
skin markers are assumed to be rigidly connected to the underlying bone. The
modelling error that comes from ignoring the skin movement is known as soft
tissue artefact (STA).
It is conjectured that the MRI method will lead to lower residuals than MoCap,
because the measurements are not disturbed by STA. The null hypothesis is
that the mean residuals are equal. In this Chapter, it is tested whether the
measurement of bone poses with MRI really leads to more accurate results than
the measurement of skin marker positions with MoCap, when a hand is modelled
as a chain of rigid bodies. Furthermore, if this is the case, it investigated how
much worse MoCap is with respect to MRI.

5.1 Methods

Kinematic hand models are built based on MRI data and based on MoCap
data. The residual rotational and translational discrepancies of both models
are compared.

5.1.1 MRI measurements of finger segment poses

The MRI measurements for this comparison are similar to the measurements
described in Section 3.1.1.
Both the MRI and the MoCap measurements are taken of the same subject, a
30-year-old male with no history of hand injuries who gave informed consent to
the procedure. Due to time constraints, only one reference posture and 19 other
postures are recorded with MRI, using a so-called turboFFE sequence and a
spatial resolution of (1mm)3. These are a subset of the postures in Table 3.1,
namely the ones marked with an asterisk.

5.1.2 MoCap measurements of finger segment poses

For MoCap, a Vicon system (OMG plc, Oxford, UK) with seven 0.3-megapixel
cameras is used. One finger is recorded at a time, with three markers per finger
segment (Figure 5.2). Markers with a diameter of about 4mm are used. They
are spherical except for a flat section at the bottom, where they are attached
to the skin or to a piece of cardboard using double-sided adhesive tape. The
pieces of cardboard are attached to the skin, as well. The markers are covered
with retro-reflective material. The cameras are placed in a semi-circle around
the workspace (Figure 5.1).
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Figure 5.1: The setup of the cameras for the MoCap measurements. The cameras
are placed around the workspace, approximately in a semi-circle with a radius of 1m.

The cameras are fitted with infra-red light sources and a filter that transmits
infra-red light. The light reflected by a marker appears as a circle on the camera
images. The centres of the circles are used for determining the direction of the
marker with respect to the cameras. The 3D position of the marker lies at
the intersection of the direction lines (“rays”) of different cameras. To account
for measurement noise, the software allows setting a distance threshold up to
which rays are treated as intersecting.This method of optical measurements is
also called stereo-photogrammetry.

One reference time sample and nineteen representative other samples are se-
lected from the captured data.

Whenever there are at least three non-collinear markers per segment (MPS),
the pose (position and orientation) of the segment can be measured. The pose
in each time frame is calculated by placing a coordinate system in the following
way: The first marker is the origin; the line between the first and second marker
is the x direction; the y direction is perpendicular to the marker plane, along
the cross-product between the x direction and the line between the first and
third marker; the z direction is along the cross-product between the x and y

direction. One finger is measured at a time, with the marker sets moved from
finger to finger and a constant set of three markers on the back of the hand.
This is done to facilitate automatic labelling of the markers according to the
edge lengths of the triangles that they form: it is easier to find three different
triangles for one finger than to find 15 different triangles for all five digits.
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Figure 5.2: Placement of the markers on the fingers for the MoCap experiment. One
finger is measured at a time, with the marker sets moved from finger to finger and
a constant set of three markers on the back of the hand (Figure 5.2). This is done
to facilitate automatic labelling of the markers according to the edge lengths of the
triangles that they form.

5.1.3 Modelling of finger joints

One joint instead of three joints is used to model the palm, because the motion
of the single metacarpal bones is difficult to discriminate with MoCap. The
same fifteen joints for fingers and thumb as described in Chapter 3 are used.
The thumb CMC joint is modelled with two non-orthogonal, non-intersecting
axes (2na), the MCP joints are modelled with two orthogonal, intersecting axes
(2oia) and the remaining joints are modelled with single axes (1a). The axis
parameters and residual rotational and translational discrepancies are modelled
as described Chapter 3.

5.1.4 Modelling of kinematic chains

Additionally, whole finger postures are matched with both methods. For this,
the joints are concatenated to form kinematic chains. The global pose and the
joint angles are optimised to minimise the mean rotational and translational
discrepancies between the modelled and measured bone poses. For doing so, a
weighting between the rotational and translational discrepancy is decided. One
millimetre of translational discrepancy is treated with the same weight as one
degree of rotational discrepancy.
Kinematic chains are sequences of joints and links such that parent joints and
links influence the poses of child joints and links, for example, whole fingers or
whole hands. There are three types of kinematic chains:

1. simple chains, in which each child segment has exactly one parent segment
and each parent segment has one child segment, except for the first and
last segment, which lack parent and child, respectively;

2. branching chains (tree kinematics), in which a segment may have multiple
children but not multiple parents;

3. parallel chains, in which a segment may have multiple parents.
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Here only simple chains shall be considered.
The advantages of modelling whole chains instead of single joints are:

1. pose measurements of more segments are used for the identification of the
static parameters, leading to higher overall accuracy;

2. it is not necessary to measure the full pose of each segment—single position
measurements or even missing information per segment are possible, as
long as the information in the whole chain suffices to identify the static
parameters. For example, the static parameters of a chain with not more
than six axes can be identified using full pose information of only the last
segment (end effector); this procedure is also applied in robotics [Khalil
and Dombre, 2002].

The cost function for the optimisation of the static parameters of the kinematic
chains differs from the one single joints (Equation (3.8)) in that the modelled
and measured segment poses are compared not in the coordinate systems of their
respective parents but in one common base coordinate system for all segments:

{ξopt, qopt(t)} = argmin
ξ,q

(ε),

with

ε = mean
i∈{1,...,ns},t∈P

[
wt

∥∥∥baseTi,meas(t)(1:3,4) − baseTi,mod(ξ, q(t))(1:3,4)

∥∥∥+
wrRotationalDistance

(
baseTi,meas(t),

baseTi,mod(ξ, q(t))
)]
, (5.1)

where i ∈ {1, . . . , ns} is the index of the segment.
The modelled posture baseTi,mod(ξ, q(t)) is calculated recursively by reusing the
pose of the parent segments and only calculating the forward kinematics between
the segment and its parent:

baseTi,mod(ξ, q(t)) =
baseTp(i),mod(ξ, q(t)) fi(ξi, qi(t)),

where p(i) is the number of the parent segment (in simple chains, p(i) = i− 1),
and fi(ξi, qi(t)) is the forward kinematics function of the joint that connects
the parent segment with the i-th segment.

5.1.5 Comparison of the residuals

The empirical distributions of the residuals are plotted in Figure 5.3 to see
whether they are close enough to a normal distribution, so that a Student’s t-
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test can be applied meaningfully. The lines in Figure 5.3 connect points whose
x-coordinates are the bin centres of variable-width histograms and whose y-
coordinates are the number of data points (samples) in the respective bin divided
by the bin width. The bin widths are chosen so that each bin contains an equal
number of samples. The number of bins is determined according to the so-called
Rice rule:

nbins = ceiling((2× ndata_points)
1/3).

The resulting histograms are different from normal distributions in a number
of ways. Firstly, they lack a peak towards which the frequency density mono-
tonically increases and from which it monotonically decreases. Secondly, the
distributions possess a right tail but lack a left tails. Due to the definition of
the residuals, they cannot assume negative values.

Since the histograms of the residuals look rather different from normal distri-
butions, the means±SD of the residuals errors are plotted in Figure 5.4 and
compared visually.

5.2 Results

The results of the comparison between MRI and MoCap are shown in Figure 5.4.
On the left, single bone poses are compared, and on the right, whole finger
postures. The bars show the mean of the residual rotational discrepancies in
degrees and the residual translational discrepancies in mm, respectively. The
error bars show the SD. The value n is the number of bone poses. There are 19
hand postures, 16 joints and 19 bones. The MC2 and MC4 bones are part of
two finger chains each: MC2 is part of thumb and index finger and MC4 is part
of ring and little finger. So the maximum number of bone poses is 19×16 = 304

for single joints and 19×(19+2) = 399 for whole fingers. Whenever the numbers
are lower, the image quality of the respective bone was too low or a marker was
occluded.

The mean rotational residual for single joints is 4.4◦ for MRI data explained by
the MRI-based model and 4.7◦ for MoCap data explained by the MoCap-based
model. The mean translational residual for single joints is 1.4mm (MRI) and
1.2mm (MoCap) respectively. The mean rotational residual for whole fingers is
3.5◦ and 3.6◦, respectively. The mean translational residual for whole fingers is
1.2mm and 1.5mm, respectively.



5.2. RESULTS 73

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

rotational residual (degrees)

fr
eq
ue
nc
y
de
ns
it
y
(s
am

pl
es
/d

eg
re
e)

MRI single joints
MoCap single joints
MRI whole fingers
MoCap whole fingers

0 2 4 6 8 10 12 14
0

100

200

300

400

500

600

700

translational residual (mm)

fr
eq
ue
nc
y
de
ns
it
y
(s
am

pl
es
/m

m
)

MRI single joints
MoCap single joints
MRI whole fingers
MoCap whole fingers

Figure 5.3: Histograms of the rotational and translational discrepancies between
measured and modelled segment poses (residuals) in the comparison between MRI and
MoCap (see Section 5.1.5).
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Figure 5.4: Comparison of MRI and MoCap. On the left, single bone poses are
compared, and on the right, whole finger postures. The bars show the mean of the
residual rotational discrepancies in degrees and the residual translational discrepancies
in mm, respectively. The error bars show the SD of the residuals. The value n is the
number of bone poses. Adapted from Stillfried et al. [2014].
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5.3 Discussion

It was tested how well a reasonable rigid-body model with chains of rotation
axes could be fitted to palm and finger segment poses which were measured using
MRI and MoCap. The residual discrepancy between measured and modelled
segment poses is caused by different factors:

1. measurement errors, that is, differences between the real movement and
the measured movement;

2. numerical errors, mainly local optima in the identification of the static
and dynamic joint parameters; and

3. model errors, that is, differences between the real joints and the modelled
joints.

The same model was applied to both measurement sets, in which the postures of
the same individual hand were recorded. Therefore, it can be expected that the
model error affects both measurements similarly. Also, the same optimisation
method was applied for the identification of the static and dynamic parameters
based on both measurements. Furthermore, the risk of local minima was reduced
by repeating the optimisations with different starting points. Therefore, it can
be expected that any major differences in the residual errors of models based
on both measurement methods are due to measurement errors.
It is believed that this is the first work that compares the residual modelling
errors of the same individual limb whose movements were measured with two
different methods. The advantage of this approach is that no ground-truth data
of the movement is necessary. On the downside, the numerical errors of the
parameter optimisation and the model errors themselves contribute to the total
residual modelling error. Therefore, this method is not able to estimate the
absolute value of the measurement error. However, it can be used to make a
relative comparison between the measurement methods.
The experiment results do not show any substantial accuracy advantage of MRI
over MoCap—contrary to the initial hypothesis. In one of the the four tested
categories, MoCap is even slightly better, but all in all, the values for both
methods are very similar. Presumably the errors that occur due to the segmen-
tation and registration of the bones in MRI are of similar size as the errors that
occur due to STA in MoCap.
Therefore, it seems that accuracy is not a deciding criterion for the choice be-
tween MRI and MoCap. Other criteria can play a role. For example, with
MRI, a model with surface geometries can be created (see Chapter 4), while
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with MoCap, continuous movements can be measured instead of only static
postures.
The mean errors of 1–2mm and 3–5◦ are moderate and in a similar range as
the ones in Chapter 3. For example, the grasping of medium-sized objects is
probably not affected by position and orientation differences in this order of
magnitude. In human fingers, the mobility of a grasped object due to tissue
softness is in the same range. However, the variance of the residual errors is
rather large.
Interestingly, the method by Cerveri et al. [2007], which places the rotation axes
according to the anatomical landmarks of the hand, resulted in similar ranges of
position errors: their RMSE values over all samples of 15 task repetitions were
between 0.4 and 3.3mm, depending on the subject, task and marker. There
were four subjects, four tasks, four markers on the thumb and three markers on
the index finger.
On a first view, it appears surprising that the average residual errors are lower
for whole fingers than for single fingers: when considering the posture of a whole
finger, an error of a proximal joint can also affect joints that are situated distally
to it, and therefore lead to a larger error. On the other hand, when considering a
whole finger, the global pose of the first bone was optimised. This optimisation,
which is not conducted when considering single joints, can lead to a reduction
of the residual errors. Furthermore, in single joints the pose of the proximal
bone is considered to be given and only the residual pose errors of the distal
bone is considered. Since the proximal bones are larger than the distal bones, it
is possible that their registration error is lower. Since they are included in the
analysis of whole fingers, the may be able to reduce the mean residual error.
The creation of hand models based on MoCap may further be improved by using
a larger number of postures and an explicit model for the skin movement (see
Chapter 6).



6
Validation of the skin movement model by

Zhang et al.

In order to accurately model the hand kinematics using surface marker mea-
surements and to compensate for STA, the rigid-body approach for the skeletal
posture needs to be complemented with elastic modelling elements that account
for the movement of the skin relative to the bones.
Several elastic models for the skin have been proposed [Zhang et al., 2003,
Dumas and Cheze, 2009, Corato et al., 2009]. The model by Zhang et al. [2003]
is particularly interesting because it models the movement of the skin near joints,
where the skin movement is the largest.
In this Chapter, the movement of the skin with respect to the bone is measured
using MRI. It is tested how well the skin movement model by Zhang et al.
[2003] is able to explain the measured skin movement.

6.1 Methods

For validating the skin movement model of Zhang et al. [2003], positions on
certain points on the skin are measured using markers in MRI, the relative
movement with respect to the bone is calculated and joint parameters are fitted
to the bone poses. The marker positions are predicted using the joint angles and
the skin model. The parameters of the skin model are optimised. The differences
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Figure 6.1: Photograph of Soledum capsules on CMC, MCP, PIP and DIP joints and
MC, PP, PM and PD bones. Reproduced from Gustus et al. [2012].

between the measured and modelled marker positions are calculated.

6.1.1 Measurement of skin movement using MRI

MRI-sensitive Soledum capsules (Casella-med, Cologne, Germany; spheroids
with diameter 7mm and long axis 10mm) are attached to the skin on the dorsal
side of the hand of one subject (Fig. 6.1) over the CMC, MCP, PIP and DIP
joints, as well as the MC, PP, PM and PD phalanx bones. For the validation of
the skin model, the markers over the MCP, PIP and DIP joints are considered.
MRI images of 20 different hand postures are recorded (np = 20). The postures
are chosen such that each joint is moved through its whole range of motion (see
postures with asterisks in Table 3.1). The volumes of the bones (cancellous
part) and of the capsules are segmented from the MRI images.

One posture (flat hand) is designated as the reference posture. The poses of
the bone coordinate system (BCS) and joint axes are determined as described
in Stillfried et al. [2014]. The position of each skin marker is measured as the
mean of the coordinates of the capsule volume weighted by the MRI intensity
values. The marker positions are projected onto the sagittal plane1 of the bone
(Fig. 6.2).

The STA is quantified as the distance between the marker in the reference

1flexion/extension plane, see Anatomical terms.
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Figure 6.2: Relative movement of the markers in the sagittal planes of the closest
bones; in the case of MCP, PIP and DIP markers, relative to the closest proximal
bone (the surface between cancellous and cortical bone is shown). The range of the
movement is given in mm. It is particularly large near joints (red dots in the colour
version) and on the back of the hand, and comparatively small near the middle of the
bones of the digits (blue asterisks in the colour version).
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posture and the marker in another posture, both expressed in the BCS:

sk = ||Bpm,meas,k − Bpm,meas,ref ||, (6.1)

where sk is the amount of uncompensated STA in posture k, Bpm,meas,k is the
measured position of the marker with respect to bone B in posture k and
Bpm,meas,ref is the measured position of the marker with respect to the bone
in the reference posture. Here, the the proximal bone is chosen as reference.
The mean STA and its standard deviation are shown in the second column of
Table 6.1 (mean STA±SD (mm), uncompensated).

6.1.2 Validation of the skin movement model of Zhang et al.
[2003]

The amount sresidual,k of residual STA is the distance between the modelled and
the measured marker position:

sresidual,k = ||Bpm,meas,k − Bpm,mod,k||, (6.2)

where Bpm,mod,k is the modelled marker position.
The modelled marker position is calculated according to the model by Zhang
et al. [2003]by rotating the marker from its initial position by an angle that is
proportional to the skeletal joint angle:

Bpm,mod,k = Rot(Ba1, c1 θ1,k) (
Bpm0 − Bp1) +

Bp1 (6.3)

for 1-DoF joints and

Bpm,mod,k = Rot(Ba1, c1 θ1,k)
(
Rot(Ba2,ref , c2 θ2,k) (

Bpm0 − Bp2,ref)

+ Bp2,ref − Bp1

)
+ Bp1 (6.4)

for 2-DoF joints, where Rot(·, ·) is the rotation matrix (Equation (1)), Ba1

is the orientation of the first rotation axis, ci is the factor that describes the
proportionality between the i-th skeletal joint angle and the marker movement,
θi,k is the i-th skeletal joint angle in posture k, Bpm0 is the initial marker position
when all joint angles are zero, Bp1 is a point of the first rotation axis, Ba2,ref is
the reference orientation of the second rotation axis (at θ1 = 0), and Bp2,ref is
a point on the second rotation axis at θ1 = 0.
As described in Section 2.4, the initial marker position Bpm0 and the propor-
tionality factors c1 and c2 can be optimised to best describe the skin movement.
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The starting point of the optimisation is set as follows:

Bpm0,start =
Bpm,meas,ref , (6.5)

ci,start = 0.5. (6.6)

The mean STA and its standard deviation obtained with these values are shown
in the third column of Table 6.1 (mean STA±SD (mm), default values).

The optimal skin movement parameters minimise the mean amount of residual
STA (Equation (6.2) with Equation (6.3) or Equation (6.4)):

{Bpm0,opt, ci,opt} = argmin
Bpm0,ci

(
mean

k∈{1,...,np}
(sresidual,k)

)
. (6.7)

The simplex algorithm by Nelder and Mead [1965], as implemented in Matlab,
is used to find the optimal parameters.

The mean STA and its standard deviation using the optimised parameters,
as well as the optimal parameters values, are shown in the fourth, sixth and
seventh column of Table 6.1, respectively (mean STA±SD (mm), optimised
values; optim. param.).

A leave-one-out cross-validation is performed, and the resulting mean and stan-
dard deviation of the STA are shown in column five of Table 6.1 (mean STA±SD
(mm), cross-validated).

6.2 Results

The total amount of skin movement that was measured is shown in Figure 6.2.
Its range is 7.6–15.9mm near the CMC joints, 6.8–12.4mm near the MC bones,
15.9–17.7mm near the MCP joints, 3.3–6.5mm near the PP bones, 12.4–14.5mm
near the PIP joints, 2.0–2.6mm near the PM bones, 7.2–8.9mm near the DIP
joints and 2.1–4.6mm near the PD bones. In all cases, the skin movement near
joints is larger, often much larger, than near the middle of the neighbouring
bones.

Further results of the skin movement measurement and the validation of the
skin model by Zhang et al. [2003] are shown in Table 6.1. The first column
shows the joint names in whose vicinity the marker movement is measured.

In the second column, the mean uncompensated marker movement (Equa-
tion (6.1)) and its SD are given. The mean over all postures and joints is
3.8mm and the mean over all joints of the SD over the postures is 3.3mm.

In the third column, the residual STA after applying the skin movement model
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Table 6.1: Validation of the skin movement model using MRI measurements as ground
truth.

mean STA±SD (mm) optim. param.

joint uncompen- default optimised cross-
name sated values values validated c1 c2

MCP1 3.2 ±2.6 2.3 ±1.5 2.0 ±1.4 2.5 ±1.5 0.5 0.4
MCP2 6.8 ±4.0 3.7 ±2.3 3.2 ±1.7 3.7 ±1.7 0.5 0.8
PIP2 2.5 ±3.3 1.4 ±1.0 0.8 ±0.4 1.1 ±0.6 0.8
DIP2 1.7 ±1.9 1.1 ±0.6 0.9 ±0.4 1.1 ±0.5 0.6
MCP3 6.6 ±5.0 2.8 ±2.1 2.0 ±1.2 2.2 ±1.3 0.6 1.2
PIP3 3.6 ±4.4 1.7 ±1.1 1.4 ±0.9 1.6 ±0.9 0.6
DIP3 1.7 ±1.6 1.7 ±1.2 1.2 ±0.9 1.1 ±0.9 0.4
MCP4 7.2 ±5.4 3.1 ±2.5 2.0 ±1.3 2.4 ±1.2 0.8 0.7
PIP4 3.0 ±3.6 1.7 ±1.2 1.5 ±1.1 1.6 ±1.2 0.6
DIP4 1.7 ±1.7 1.2 ±0.8 1.0 ±0.7 1.1 ±0.7 0.6
MCP5 6.9 ±4.5 4.6 ±2.4 2.8 ±1.6 3.5 ±1.8 0.5 0.2
PIP5 2.9 ±3.1 2.3 ±1.4 1.7 ±1.2 1.9 ±1.3 0.7
DIP5 2.1 ±1.7 1.7 ±1.1 1.3 ±1.0 1.4 ±1.0 0.7

mean 3.8 ±3.3 2.3 ±1.5 1.7 ±1.1 1.9 ±1.1

by Zhang et al. with the default values (Equation (6.2) with Equation (6.5)) is
shown. Its overall mean is 2.3mm (about 61% of the uncompensated movement)
and its mean SD is 1.5mm.
In the fourth column, the residual STA after applying the skin model by Zhang
et al. with optimised values (Equation (6.2) with Equation (6.7)) is shown. Its
overall mean is 1.7mm (about 45% of the uncompensated movement) and its
mean SD is 1.1 mm.
In the fifth column, the LOOCV-value of the above is given with a mean of
1.9mm (50% of the uncompensated movement) and a mean SD of 1.1mm.
All values are given for the marker positions projected onto the sagittal planes
of the nearest bones.

6.3 Discussion

The measurements of skin movement with respect to the bone showed that it is
always larger near joints than away from joints. Therefore, the model by Zhang
et al. [2003] targets the most important part of the skin.
The model explains already with the default values close to 40% of the skin
movement. Once its parameters are optimised, it is able to explain about 50%
of it. (This value is cross-validated, so there is no risk of an overfit.) Thus, the
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model is shown to be useful in compensating a large part of the skin movement.
This percentage improvement is better than the one reported by the Dexmart
project (18.2–27.8%, see Section 2.4). However, their absolute discrepancy be-
tween measured and modelled marker positions was lower (0.91–1.02mm with
rigid model and 0.66–0.80mm with moving-marker model). Furthermore, the
marker placement was different.
The residual skin movement of about 50% may be due to actual skin movement
which was not represented in the model, but a part of it may also be due to
noise in the measurement of the bone pose and the marker position.
The measurements were made with only one subject. Since the overall anatomy
of the hand seems similar for most humans, it is expected that the qualitative
results of this experiment are valid. However, in order to obtain quantitatively
reliable results, more subjects would be needed.
Another limitation of the experiment was the limited accuracy of the bone
orientation estimation around its longitudinal axis. Because of this, the marker
positions had to be projected onto the sagittal plane, so that a full validation
of the 3D movement of the markers was not possible.
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7
Conclusion

This thesis presented a set of methods and investigations for improving the
creation of hand movement models:

A method for determining joint types of joints of the human hand was devel-
oped. The method provides to its user a measure how well each joint type out of
a given list is able to represent a set of measured segment poses. The user sets a
threshold on this measure and the simplest joint that satisfies the threshold will
be selected. A designer of a humanoid robotic hand can use this method for de-
ciding which joint types the hand should have. The method was demonstrated
on a set of representative hand postures recoded using magnetic resonance imag-
ing (MRI). The measure of the goodness of fit of the joint was cross-validated,
thereby avoiding an overfit of the joint parameters to the measured poses. The
sources of measurement errors were identified and the contributions of each of
the sources were estimated.

By defining the joint types of all the joints of that hand, and additionally mea-
suring and segmenting the hand surface, a virtual hand model was created.
Applications for the resulting hand model were shown: grasp simulations of
different objects with three human hand models with different thumbs and a
robotic hand model, as well as simulations for an exoskeleton. In simulations
of specific grasps of six objects, no differences were found between the thumb
models of the human hand. The robotic hand model was able to perform five
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of the six grasps as specified, and one of the grasps only with a different grasp
type. A grasp score that estimates the ability to resist external perturbations
was in most cases higher for the human hand models than for the robotic hand
model, probably due to the higher number of DoF resulting in a higher number
of contact points. An investigation about the subjectivity of the results with
one object, two hand models and five operators showed a moderate operator-
dependent variability of the grasp score compared to the hand-model-dependent
variability of the grasp score.

A comparison of measurement methods could not detect any improved preci-
sion when using MRI instead of optical motion capture (MoCap). The mean
residual error for single joints is in both cases around 1mm (translational) and
5◦ (rotational).

The skin movement model by Zhang et al. [2003] was validated. It can further
improve MoCap measurements by explaining a substantial amount of the skin
movement relative to the bones.

7.1 Limitations

A limitation of most of the studies in this thesis is that they were conducted
with only one subject, which was in part due to the limited availability of the
MRI machine. Therefore the results cannot be treated as information about the
human hand in general, but rather as proof of concept of the presented methods.
However, it can be argued that most of the human hands are able to perform
most of the tasks necessary for daily living very well. Hence, understanding and
copying the functionality of one of them can already provide helpful insights for
the design of robotic hands. Still, in order to discern which properties are a
result of natural variation and which ones are crucial for the functioning of the
human hands, data from a larger set of human hands will be needed.

In the method for selecting the joint types, the list of joint types is necessarily
limited. In this thesis, only rotary joint types with up to three rotation axes were
considered. This seems to be a good approximation for most joints. However,
the CMC joint of the thumb seems to perform more complex movements that
possibly include rotations coupled with translations. Also, the movement of
the little finger IMC joint seems to be more complex than a simple rotation,
with the head of the MC5 bone first moving in palmar direction and then in
palmar-radial direction.

Generativeness may be an important property for humanoid hands, as it al-
lows the user to predict the kind of movements that the hand can do. In this
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thesis, no method was found for quantifying generativeness. While it is closely
linked to the number of DoF, it is not exactly the same. The range of motion
of the joints was determined independently for each DoF. However, there are
interdependencies between joints, some of them rather obvious, and probably
also between the DoF of a multi-DoF joint. For example, the difference be-
tween the flexion angles of the MCP2, MCP3, MCP4 joints is limited. These
interdependencies are not modelled, thereby allowing some unnatural postures.

A general objection to kinematic modelling of the human hand is that the human
hand does not exist. Of course, each individual hand differs from the next. But,
as Grebenstein [2010] points out, there are “seven billion perfect hands”, that
is, each of these different hands is able to perform the movements needed in
daily living. This means that if a robotic hand is able to perform the same
movements as any individual hand, it will be able to handle common objects.
On the other hand, it might copy individual peculiarities of that hand, which
may be difficult to implement but not important for its function. Therefore, it
would be interesting to find the intersection of properties that all human hands
have in common, as well as the directions of freedom in which they differ from
each other. Such a more general hand model could be created based on the
measurements of hand postures of a large number of subjects.

The determination of the joint types and the calculation of the modelling error
are limited by the accuracy and precision of the measurements. If the modelling
error of a joint reaches below the measurement error by using a joint type with
more DoF, it is likely that the additional DoF compensate the modelling error
instead of describing any real motion.

The method for selecting the joint types includes a subjective element, namely
the setting of the accuracy threshold. This will likely be influenced by assump-
tions and prior knowledge about the joint types. For example, in this thesis,
the threshold of the intermediately complex model was set in a way that the re-
sulting joint types coincided with the joint types mentioned in the literature. A
further subjective element is the selection of the postures that are used for iden-
tifying the joint parameters. In this thesis attention was paid to cover the whole
range of motion of each DoF, that is, including at least one posture where the
DoF is close to its minimum position and one where it its close to its maximum
position.

The grasp simulations relied on failed grasps to reveal the importance of kine-
matic properties for the functionality of the hand. The grasps tested so far were
limited to a set of six object grasps times four hand models. In-hand manipula-
tion was not yet considered. The results were influenced by some subjectivity,
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because human operator interaction was required. Since the grasp score eval-
uates the contact wrench on the object and therefore on the contact forces, it
cannot be treated from a purely kinematic point of view. The simulation as-
sumed unit forces at each contact location. The actual forces that the muscles
and actuators can apply were not considered. The grasp score should therefore
be taken cum grano salis. The simulation treated the finger segments as rigid
bodies. Possibly important contributions of the soft tissue deformation to grasp
stability by moments and form closure could therefore not be evaluated. A con-
stant friction coefficient was assumed, ignoring the dependency of the friction
coefficient on the materials of hand and object.

7.2 Outlook

In future work, it might make sense to explore other joint types, for example,
translational joints, joints with coupled rotation and translation, parallel mech-
anisms like 4- or 5-bar linkages or the two-curvature model by Van Nierop et
al. [2008]. Interdependencies between DoF and joints could be considered, in
order to create hand models that avoid unnatural postures. In order to make
the selection of joint types less subjective, statistical methods like Akaike In-
formation Criterion or Bayesian Information Criterion could be applied for all
fingers, as it was already done for the thumb by Corato et al. [2009].
It would also be interesting to analyse the hand movements of a very large
group of subjects and to find out which kinematic properties these hand have in
common and in which properties they differ from each other. The properties in
which they differ from each other could be regarded as “free” properties, because
all of the subjects have fully functional hands. In order to build an anthropo-
morphic hand that copies human movement abilities, the free properties could
be chosen so that they are most easily implemented. As an example, if the an-
gle between two rotation axes varies in humans between 85 and 95 degrees, the
robotic hand could be designed with orthogonal axes, if this gives an advantage
for the manufacture or control of the robotic hand.
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