





# Performance of Block Jacobi-Davidson

M. Röhrig-Zöllner<sup>1</sup>, J. Thies<sup>1</sup>, M. Kreutzer<sup>2</sup>, A. Alvermann<sup>3</sup>, A. Pieper<sup>3</sup>, A. Basermann<sup>1</sup>, G. Hager<sup>2</sup>, G. Wellein<sup>2</sup>, and H. Fehske<sup>3</sup>

<sup>1</sup>DLR, Simulation and Software Technology, <sup>2</sup>Erlangen Regional Computing Center, <sup>3</sup>Physics, University of Greifswald



# Numerical method

#### **Eigenvalue problem definition**

Calculate a small number of extremal eigenpairs  $(\lambda_i, \mathbf{v}_i)$  for a sparse, large matrix  $A \in \mathbb{C}^{n \times n}$ :

 $AV_i = \lambda_i V_i$  $i = 1, \ldots, l.$ 

With an orthonormal basis  $Q = (q_1, \ldots, q_l)$  for the invariant subspace  $\mathcal{V} = \text{span}\{v_1, \ldots, v_l\}$  one obtains the more stable block formulation:



 $\rightarrow$  Partial Schur decomposition with  $r_{i,i} = \lambda_i$ :

#### Additional operations due to blocking

- Blocking increases the number of operations (but blocked operations are faster).
- $\rightarrow$  Question: How large is the overhead?

2.5

- Approach to estimate possible performance gains:
- Count sparse matrix-vector multiplications (spMVM).
- Relate results to the performance of block spMVMs.
- $\rightarrow$  For more than 20 eigenpairs blocking may be beneficial.

Andrews

ctd1 finan512 torsion1

crv10000

# **Applications from quantum physics**

### The Spin<sub>SZ</sub>[L] matrices

• Generic benchmark problem from quantum physics

- Chain of *L* electron spins 1/2, closed to a ring (Fig. 5)
- Computational representation of Hamilton operator in terms of bit patterns & bit swap/flip operations
- Find a few eigenvalues at the left end of the spectrum (lowest energy states)

• Symmetric matrix, can have lots of multiple eigenvalues • Matrix dimension  $\binom{L}{L^2}$  grows exponentially with L

> number of rows non-zero count name







#### **Block correction equation**

In each step of a block Jacobi-Davidson algorithm one calculates correction vectors  $\Delta q_1, \ldots, \Delta q_l$ :

 $(I - \widetilde{Q}\widetilde{Q}^*)$   $(A - \widetilde{\lambda}_i I)(I - \widetilde{Q}\widetilde{Q}^*)\Delta q_i \approx -(A\widetilde{q}_i - \widetilde{Q}\widetilde{r}_i).$ projection onto Q

Here  $(\tilde{Q}, \tilde{R})$  is the current approximation with  $\tilde{\lambda}_i = r_{i,i}$  and the column vectors  $\tilde{r}_i$  of R.

#### **Comparison to the single-vector JDQR**

The single-vector JDQR correction equation is  $(I - \overline{Q}\overline{Q}^*)(A - \tilde{\lambda}I)(I - \overline{Q}\overline{Q}^*)\Delta q \approx -(I - Q_kQ_k^*)(A\tilde{q} - \tilde{\lambda}\tilde{q})$ with converged Schur vectors  $Q_k$  and  $\overline{Q} = (Q_k \tilde{q})$ .  $\rightarrow$  Both RHS represent deflated residuals.  $\rightarrow$  We use a deflation with the complete block Q.



# **Blocked linear solvers**

#### **Requirements for blocked iterative solvers**

- Concurrently solve *l<sub>b</sub>* systems with different shifts.
- Group together similar operations of different systems.
- $\rightarrow$  Employ faster block spMVM and block-vector operations.

#### **Blocked MINRES algorithm**

- Standard MINRES method (unpreconditioned) • Very similar to blocked GMRES:
- Based on Lanczos recurrence instead of modified

| Spin <sub>SZ</sub> [26] | $1.0 \cdot 10^{7}$    | 1.5 · 10 <sup>8</sup> |  |
|-------------------------|-----------------------|-----------------------|--|
| Spin <sub>SZ</sub> [28] | $4.0 \cdot 10^{7}$    | 6.1 · 10 <sup>8</sup> |  |
| Spin <sub>SZ</sub> [30] | 1.6 · 10 <sup>8</sup> | 2.6 · 10 <sup>9</sup> |  |

Table 1 : Dimension of the matrices used in the experiments.

Figure 6 : Typical sparsity structure of the Spin<sub>SZ</sub>[*L*] matrices (here L = 20). On the right a bandwidth-reducing preordering was applied.

# **Performance engineering of the key operations**

#### Jacobi-Davidson operator

 Required in each inner iteration (iterative solver for the block correction equation) • Calculate block vector Y for given  $X = (x_1, \ldots, x_l)$  with

### $y_i \leftarrow (I - QQ^T)(A - \tau_i I)x_i$ .

• Shifted sparse matrix-multiple-vector multiplication (spMMVM) can be applied in one step

- The block vector storage scheme matters (see Fig. 8):
- $\rightarrow$  Column-major scheme (standard) not beneficial

block size  $n_b$ 

- (CRS vs. SELL-C- $\sigma$ )



#### **Block vector operations**

- Block vectors are dense 'tall skinny' matrices.
- $\rightarrow$  GEMM operations
- Performance is memory bound due to operands shape (and well predicted by the roofline model).
- Hand-optimized code faster than common BLAS libraries

block size n<sub>b</sub>



- $\rightarrow$  Reduce the number of MPI messages.
- Dynamic queue:
- Remove converged systems.
- Enqueue new systems.

### **Blocked GMRES algorithm**

- Standard restarted GMRES method (unpreconditioned) • Single iteration:
- 1: Apply operator to preceding basis vector
- $(\tilde{v}_{k+1} \leftarrow (I \tilde{Q}\tilde{Q}^*)(A \tilde{\lambda}_j)v_k),$
- 2: orthogonalize  $\tilde{v}_{k+1}$  wrt. all previous basis vectors,
- 3: perform local operations (Givens rotations, ...).
- Basis vectors stored as blocks in a ring buffer (Fig. 2) • Individual systems can be restarted (when buffer is full).





allows block operations while using different Krylov subspaces.

Figure 8 : Single-socket performance of key operations (spMMVM+projections) with the SIMD-friendly SELL-C- $\sigma$  matrix format [2] from GHOST (left) vs. the standard CRS format (center) and the Epetra CRS format (right). The latter package uses column-major ordering for block vectors and requires an additional copy operation of the entire input vector ('import').

block size  $n_b$ 

# Block performance in strong scaling experiments

### Setup

- Sparse matrices and vectors distributed on a cluster of 1-64 nodes (using MPI)
- Dual socket nodes with 10 cores per socket (using OpenMP parallelization)
- Intel Xeon E5-2660 v2 CPUs ('Ivy bridge') at 2.20 GHz
- SELL-32-256 format for single-vector algorithm, SELL-8-32 for blocksize 2 and 4

#### Results

- Significant speedup of Jacobi-Davidson through blocking in contrast to the conclusion in [1]
- This holds for strong scaling tests on up to 1280 cores.

#### **Future work**

• Overlap communication and computation: - alleviate increased data traffic due to blocking • Use accelerator hardware such as GPUs.



## **Software**

| PHIST (Pipelined Hybrid-<br>parallel Iterative Solver Toolkit)                                   | GHOST (General Hybrid<br>Optimized Sparse Toolkit)                                                                                                              | <b>PHYSICS</b><br>(quantum physics applications)                      |  |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|
| it. lin. syst. solvers<br>(e.g. Krylov methods)<br>it. eigenvalue solvers<br>(e.g. BJDQR, FEAST) | optimized kernels<br>(e.g. $Y \leftarrow AX, C \leftarrow V^T W$ )<br>using MPI, GPI, OpenMP,<br>Pthreads, CUDA etc.                                            | e.g. graphene modelling,<br>topological insulators<br>spin chains<br> |  |
| Abstract kernel interface,<br>use alternatively                                                  | <pre>The libraries developed in ESSEX are available under a BSD licence here:     https://bitbucket.org/essex/ghost     https://bitbucket.org/essex/phist</pre> |                                                                       |  |
| ʻbuiltin'<br>(Fortran+MPI+OpenMP)                                                                | <ul> <li>https://bitbucket.org/essex/physics</li> <li>Latest news and contact information:</li> <li>http://blogs.fau.de/essex/</li> </ul>                       |                                                                       |  |
|                                                                                                  | • CHOST: manita kroutaardfau da                                                                                                                                 |                                                                       |  |

 Small block sizes (2 or 4) are beneficial. • Further effects of blocking:

- Total communication volume increases (spMVMs). - Message aggregation may improve the performance.

• See [3] for a detailed discussion.



1 2 4 8 16 32 64 128 nodes (with 20 cores each) Figure 3 : Relative performance gains with block size 2.

GHOST GHUSI moritz.kreutzer@iau.de • PHIST: jonas.thies@dlr.de • PHYSICS: alvermann@physik.uni-greifswald.de TPLs, e.g. Trilinos (Epetra or Tpetra) • preprint on the topic available [3]

# References

#### [1] Stathopoulos & McCombs.

Nearly optimal preconditioned methods for Hermitian eigenproblems under limited memory. Part II: Seeking many eigenvalues. *SISC*, 29(5), 2007.

#### [2] Kreutzer et al.

A unified sparse matrix data format for modern processors with wide SIMD units. SISC (accepted) arXiv:1307.6209, 2014.

#### [3] Röhrig-Zöllner et al.

Increasing the performance of the Jacobi-Davidson method by blocking. SISC (submitted) http://elib.dlr.de/89980/, 2014.

ESSEX – Equipping Sparse Solvers for Exascale – funded by DFG priority program 1648 (SPPEXA)

# http://blogs.fau.de/essex