
Performance of Block Jacobi-Davidson
M. Röhrig-Zöllner1, J. Thies1, M. Kreutzer2, A. Alvermann3, A. Pieper3,

A. Basermann1, G. Hager2, G. Wellein2, and H. Fehske3

1DLR, Simulation and Software Technology,
2Erlangen Regional Computing Center, 3Physics, University of Greifswald

Numerical method

Eigenvalue problem definition

Calculate a small number of extremal eigenpairs (λi, vi) for
a sparse, large matrix A ∈ Cn×n:

Avi = λivi, i = 1, . . . , l .

With an orthonormal basis Q =
(
q1, . . . ,ql

)
for the invariant

subspace V = span{v1, . . . , vl} one obtains the more stable
block formulation: {

AQ −QR = 0,
−1

2Q∗Q + 1
2I = 0.

→ Partial Schur decomposition with ri ,i = λi:

A Q = Q

R

Block correction equation

In each step of a block Jacobi-Davidson algorithm one
calculates correction vectors ∆q1, . . . ,∆ql:

(I − Q̃Q̃∗)︸ ︷︷ ︸
projection onto Q⊥

(A− λ̃iI)(I − Q̃Q̃∗)∆qi ≈ −(Aq̃i − Q̃r̃i).

Here (Q̃, R̃) is the current approximation with λ̃i = ri ,i and
the column vectors r̃i of R̃.

Comparison to the single-vector JDQR

The single-vector JDQR correction equation is
(I −QQ∗)(A− λ̃I)(I −QQ∗)∆q ≈ −(I −QkQk

∗)(Aq̃ − λ̃q̃)

with converged Schur vectors Qk and Q =
(
Qk q̃

)
.

→ Both RHS represent deflated residuals.
→We use a deflation with the complete block Q̃.

Additional operations due to blocking

• Blocking increases the number of operations
(but blocked operations are faster).

→Question: How large is the overhead?
• Approach to estimate possible performance gains:
− Count sparse matrix-vector multiplications (spMVM).
− Relate results to the performance of block spMVMs.
→For more than 20 eigenpairs blocking may be beneficial.

1

1.5

2

2.5

3

3.5

4

5 10 20 30 40 50

re
la

tiv
e

nu
m

be
ro

fs
pM

V
M

op
er

at
io

ns

number of eigenvalues found

Andrews
cfd1

finan512
torsion1

ck656
cry10000

dw8192
rdb3200l

(a) Block size 2

1
1.5

2
2.5

3
3.5

4
4.5

5

5 10 20 30 40 50

re
la

tiv
e

nu
m

be
ro

fs
pM

V
M

op
er

at
io

ns

number of eigenvalues found
(b) Block size 4

Figure 1 : Number of spMVMs of block JDQR compared to single-vector
JDQR. The black horizontal line indicates the spMVM block-speedup for a
representative matrix (cf. Fig. 8)

Blocked linear solvers

Requirements for blocked iterative solvers

• Concurrently solve lb systems with different shifts.
• Group together similar operations of different systems.
→Employ faster block spMVM and block-vector operations.
→Reduce the number of MPI messages.
• Dynamic queue:
− Remove converged systems.
− Enqueue new systems.

Blocked GMRES algorithm

• Standard restarted GMRES method (unpreconditioned)
• Single iteration:

1: Apply operator to preceding basis vector
(ṽk+1← (I − Q̃Q̃∗)(A− λ̃j)vk),

2: orthogonalize ṽk+1 wrt. all previous basis vectors,
3: perform local operations (Givens rotations, . . .).

• Basis vectors stored as blocks in a ring buffer (Fig. 2)
• Individual systems can be restarted (when buffer is full).

Blocked MINRES algorithm

• Standard MINRES method (unpreconditioned)
• Very similar to blocked GMRES:
− Based on Lanczos recurrence instead of modified

Gram-Schmidt (for orthogonalization).
− Store subspace and update result at the end.

ṽk+1← Avk

GMRES subspace 1:
GMRES subspace 2:

...

Figure 2 : A partly filled ringbuffer for 4 systems. The data structure
allows block operations while using different Krylov subspaces.

Block performance in strong scaling experiments

Setup

• Sparse matrices and vectors distributed on a cluster of
1-64 nodes (using MPI)
• Dual socket nodes with 10 cores per socket

(using OpenMP parallelization)
• Intel Xeon E5-2660 v2 CPUs (‘Ivy bridge’) at 2.20 GHz
• SELL-32-256 format for single-vector algorithm, SELL-8-32

for blocksize 2 and 4

Results

• Significant speedup of Jacobi-Davidson through blocking
in contrast to the conclusion in [1]
• This holds for strong scaling tests on up to 1280 cores.
• Small block sizes (2 or 4) are beneficial.
• Further effects of blocking:
− Total communication volume increases (spMVMs).
− Message aggregation may improve the performance.
• See [3] for a detailed discussion.

Future work

• Overlap communication and computation:
− alleviate increased data traffic due to blocking
• Use accelerator hardware such as GPUs.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 4 8 16 32 64 128

sp
ee

du
p

th
ro

ug
h

bl
oc

ki
ng

nodes (with 20 cores each)

SpinSZ[26]
SpinSZ[28]
SpinSZ[30]

single vector

Figure 3 : Relative performance gains with block size 2.

0

50

100

150

200

250

1 2 4 8 16 32 64 128

ru
nt

im
e

[s
]

nodes (with 20 cores each)

single vector
block size 2
block size 4

(a) SpinSZ[26]

0

100

200

300

400

500

2 4 8 16 32 64 128

ru
nt

im
e

[s
]

nodes (with 20 cores each)

single-vector
block size 2
block size 4

(b) SpinSZ[28]

0

100

200

300

400

500

16 32 64

ru
nt

im
e

[s
]

nodes (with 20 cores each)

single-vector
block size 2
block size 4

(c) SpinSZ[30]

Figure 4 : Strong scaling results for block sizes 2 and 4.

Applications from quantum physics

The SpinSZ[L] matrices

• Generic benchmark problem from quantum physics
• Chain of L electron spins 1/2, closed to a ring (Fig. 5)
• Computational representation of Hamilton operator

in terms of bit patterns & bit swap/flip operations
• Find a few eigenvalues at the left end of the spectrum

(lowest energy states)
• Symmetric matrix, can have lots of multiple eigenvalues
• Matrix dimension

(L
L/2

)
grows exponentially with L

name number of rows non-zero count
SpinSZ[26] 1.0 · 107 1.5 · 108

SpinSZ[28] 4.0 · 107 6.1 · 108

SpinSZ[30] 1.6 · 108 2.6 · 109

Table 1 : Dimension of the matrices used in the experiments.

1 1 1 1 10 0 0 0 0

Figure 5 : Chain of 10 electrons with spin up (1) or down (0).

Figure 6 : Typical sparsity structure of the SpinSZ[L] matrices (here
L = 20). On the right a bandwidth-reducing preordering was applied.

Performance engineering of the key operations

Jacobi-Davidson operator

• Required in each inner iteration
(iterative solver for the block correction equation)
• Calculate block vector Y for given X =

(
x1, . . . , xl

)
with

yj ← (I −QQT)(A− τjI)xj .

• Shifted sparse matrix–multiple-vector multiplication
(spMMVM) can be applied in one step

Sparse matrix–multiple-vector multiplication

• The block vector storage scheme matters (see Fig. 8):
→Column-major scheme (standard) not beneficial
→Row-major scheme significantly faster
• Experiments with different sparse matrix formats

(CRS vs. SELL-C-σ)
• The Roofline performance model gives helpful insight.

SELL-C-σ format [2]
• parameterized

‘sliced ELLPACK’
• competitive on CPU, GPU

and MIC alike
• C: chunk size (zero padding)
• σ: sorting scope

(to reduce overhead)

(a) SELL-6-12 (b) SELL-6-24

Block vector operations

• Block vectors are dense ‘tall skinny’ matrices.
→GEMM operations
• Performance is memory bound due to operands shape

(and well predicted by the roofline model).
• Hand-optimized code faster than common BLAS libraries

1 2 3 4 5 6 7 8 9 10
Cores

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

G
fl

o
p

/s

Spin
SZ

[22]

Spin
SZ

[24]

Spin
SZ

[26]

Spin
SZ

[22], n
b
=1

Spin
SZ

[24], n
b
=1

Spin
SZ

[26], n
b
=1 2.6x

2.4x

2.0x

Figure 7 : Intra-socket scaling of spMMVM for spin matrices of different
sizes (SpinSZ[22] . . . SpinSZ[26])

0

5

10

15

20

1 2 4 8

ru
nt

im
e

[s
]

block size nb

yj = (A− τjI)xj
S = QTY
Y− = QS

7
GFl

op
/s

11
GFl

op
/s

18
GFl

op
/s

24
GFl

op
/s

0

5

10

15

20

1 2 4 8

ru
nt

im
e

[s
]

block size nb

yj = (A− τjI)xj
S = QTY
Y− = QS

0

5

10

15

20

1 2 4 8

ru
nt

im
e

[s
]

block size nb

yj = Axj − τjxj
S = QTY
Y− = QS

Figure 8 : Single-socket performance of key operations (spMMVM+projections) with the SIMD-friendly SELL-C-σ matrix format [2] from GHOST
(left) vs. the standard CRS format (center) and the Epetra CRS format (right). The latter package uses column-major ordering for block vectors and
requires an additional copy operation of the entire input vector (‘import’).

Software

PHIST (Pipelined Hybrid-
parallel Iterative Solver Toolkit)

it. lin. syst. solvers
(e.g. Krylov methods)

it. eigenvalue solvers
(e.g. BJDQR, FEAST)

GHOST (General Hybrid
Optimized Sparse Toolkit)

optimized kernels
(e.g. Y ← AX ,C ← V TW)

using MPI, GPI, OpenMP,
Pthreads, CUDA etc.

PHYSICS
(quantum physics applications)

e.g. graphene modelling,
topological insulators

spin chains
...

Abstract kernel interface,
use alternatively

‘builtin’
(Fortran+MPI+OpenMP)

GHOST

TPLs, e.g. Trilinos
(Epetra or Tpetra)

The libraries developed in ESSEX are available under a BSD licence here:
• https://bitbucket.org/essex/ghost
• https://bitbucket.org/essex/phist
• https://bitbucket.org/essex/physics
Latest news and contact information:
• http://blogs.fau.de/essex/
• GHOST: moritz.kreutzer@fau.de
• PHIST: jonas.thies@dlr.de
• PHYSICS: alvermann@physik.uni-greifswald.de
• preprint on the topic available [3]

References

[1] Stathopoulos & McCombs.
Nearly optimal preconditioned methods for Hermitian eigenproblems under limited memory. Part II: Seeking many eigenvalues.
SISC, 29(5), 2007.

[2] Kreutzer et al.
A unified sparse matrix data format for modern processors with wide SIMD units.
SISC (accepted) arXiv:1307.6209, 2014.

[3] Röhrig-Zöllner et al.
Increasing the performance of the Jacobi-Davidson method by blocking.
SISC (submitted) http://elib.dlr.de/89980/, 2014.

ESSEX – Equipping Sparse Solvers for Exascale – funded by DFG priority program 1648 (SPPEXA) http://blogs.fau.de/essex

