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Numerical method Applications from quantum physics

Eigenvalue problem definition Additional operations due to blocking The Sping,[L] matrices i 0 1 1 0 0 1 0 O 1
Calculate a small number of extremal eigenpairs (\;, v;) for e Blocking increases the number of operations « Generic benchmark problem from quantum physics _? i ; ? i i ? i i $_
a sparse, large matrix A € C™™: (but blocked operations are faster). . . . .

, , _ e Chain of L electron spins 1/2, closed to a ring (Fig. 5)
AV — v i— 1 / s Question: How large is the overhead? . . . Figure 5 : Chain of 10 electrons with spin up (1) or down (0).
SR o . A h . bl f ' e e Computational representation of Hamilton operator
With an orthonormal basis Q = (i. .. .. g)) for the invariant pproach to estimate possible performance gains: in terms of bit patterns & bit swap/flip operations
subspace V = span{vy, ..., v/} one obtains the more stable B (Fio:Jnt sparsle matrr]lx-vec;or multlph(;a;:on;:. (SFI)\/II\Q/\I/\/IM). e Find a few eigenvalues at the left end of the spectrum
b|ock formu|at|on: — Relate results to t e per lormance. 0] oC Sp fS (|OW€S’[ energy StateS)
AQ-QR =0, — For more than 20 eigenpairs blocking may be beneficial. e Symmetric matrix, can have lots of multiple eigenvalues
-lQrQ+3l =0. e Matrix dimension (Lﬁz) grows exponentially with L
(2]
— Partial Schur decomposition with r;; = A;: S
= 4 Andrews —+— name number of rows non-zero count
R S 85 ooodal Spinsz[26] 1.0 107 1.5.108
_ Zz 3 torsiont —5— - Spinsz[28] 4.0-10’ 6.1-10°
- 5 CkB56 —® Spingz[30]  1.6-108 2.6-10°
2 23 cry10000 * - Tuni - - -
S dws192 Table 1 : Dimension of the matrices used in the experiments. Figure 6 : Typical sparsity structure of the Spinsz[L] matrices (here
g 2 x (db3200] 4 | L = 20). On the right a bandwidth-reducing preordering was applied.
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Block correction equation 2 \-/ - == —
5 5 10 20 30 40 50
In each step of a block Jacobi-Davidson algorithm one ) number of eigenvalues found
calculates correction vectors Agy, ..., Aq;: (@) Block size 2

Performance engineering of the key operations

Jacobi-Davidson operator

=90 (A=l - QQ)Ag ~ —(Ag: — Qr).

projection onto Q-+

Here (Q, R) is the current approximation with \; = r;; and
the column vectors r; of R.

Block vector operations

® Required in each inner iteration * Block vectors are dense ‘tall skinny’ matrices.
Comparison to the single-vector JDQR (iterative solver for the block c.orrection equation) | — GEMM operaj[ions
e Calculate block vector Y for given X = (xy,...,x) with e Performance is memory bound due to operands shape
The single-vector JDQR correction equation is y; (I - QQT)(A - 7ih)x;. (and well predicted by the roofline model).

relative number of spMVM operations

AN A SN OO ~ _ 1 : TR TR * Hand-optimized code faster than common BLAS libraries
(I — QQ)A - NI - QQ)Aq ~ —(I — QcQ*)(AG — \g) number of eigenvalues found e Shifted sparse matrix—multiple-vector multiplication

with converged Schur vectors Qx and Q = (Qx ). (b) Block size 4 (spMMVM) can be applied in one step 20
— Both RHS represent deflated residuals. B Figure 1 : Number of spMVMs of block JDQR compared to single-vector e—e Spin[22]
— We use a deflation with the complete block Q. JDQR. The black horizontal line indicates the spMVM block-speedup for a Sparse matrix—-multiple-vector multiplication 28 Spin... [24]
representative matrix (cf. Fig. 8) 26 p—p Sping,
_ A—A SpinSZ[26]
® The block vector storage scheme matters (see Fig. 8): 24 Spin...[22]. n.=1
— Column-major scheme (standard) not beneficial 9 vy p. S22 b
— Row-major scheme significantly faster —e Sping,[24], n =1
e Experiments with different sparse matrix formats 20 || m—m Sping,[26], n,=1 7 6x
(CRS vs. SELL-C-0) 18
* The Roofline performance model gives helpful insight. <\%‘ 16 2.4x
3 14
. 2.0
Blocked linear solvers 12 "
SELL-C-o format [2] o
e parameterized 5 10
Requirements for blocked iterative solvers Blocked MINRES algorithm sliced I,EI,‘LPACK 8
e competitive on CPU, GPU 6
o : . and MIC alike
e Concurrently solve I, systems with different shifts. e Standard MINRES method (unpreconditioned) _ : : 4
. : . . e C: chunk size (zero padding) 4
e Group together similar operations of different systems. e Very similar to blocked GMRES: o : @
: : - 0. sorting scope £ 2
— Employ faster block spMVM and block-vector operations. — Based on Lanczos recurrence instead of modified (to reduce overhead) o o L1
— Reduce the number of MPI messages. Gram-Schmidt (for orthogonalization). 0 1 2 3 4 5 6 7 8 9 10
e Dynamic queue: — Store subspace and update result at the end. # Cores
— Remove converged systems. a -6- (D) SELL-6-24 Figure 7 : Intra-socket scaling of spMMVM for spin matrices of different

— Enqueue new systems. sizes (Spingz[22] ... Spingz[26])

20 ‘ ‘ ‘ ‘ 20 20

yj=(A— ) m— C Y=(A- gy ooy
Blocked GMRES algorithm S=Q'Y mmm S=Q"Y mmm —
~ Y- =QS ==m Y—=QS === Y——Qs—

e Standard restarted GMRES method (unpreconditioned) GMRES subspace 1:
e Single iteration: GMRES SUbSPaCG 2 E -
1. Apply operator to preceding basis vector E ' I [ I
0 I 0
1 2 1 2 4 8 1 2 4 8

(Vierr < (1= QQ7)(A = Aj)vi),
block size ny block size ny block size ny

2. orthogonalize V1 wrt. all previous basis vectors, ~ _ e |
Figure 8 : Single-socket performance of key operations (spMMVM-+projections) with the SIMD-friendly SELL-C-o matrix format [2] from GHOST

_ ¢ | | H Gi tat Figure 2 : A partly filled rlngbuffer for 4 systems The data structure
3: perform local operations (Givens rotations, ....). allows block operations while using different Krylov subspaces.
® Basis vectors stored as blocks in a ring buffer (Fig. 2)
(left) vs. the standard CRS format (center) and the Epetra CRS format (right). The latter package uses column-major ordering for block vectors and
requires an additional copy operation of the entire input vector (‘import’).
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Block performance in strong scaling experiments

sewp PHIST (Pipelined Hybric: GHOST (General Hybria

e Sparse matrices and vectors distributed on a cluster of e Overlap communication and computation: parallel lterative Solver Toolkit) Optimized Sparse Toolkit)
1-64 nodes (using MP!) — alleviate increased data traffic due to blocking it. lin. syst. solvers optimized kernels

e Dual socket nodes with 10 cores per socket * Use accelerator hardware such as GPUs. (e.g. Krylov methods) (e.g. Y « AX,C « VW)
(using OpenMP parallelization) it. eigenvalue solvers using MPI, GPI, OpenMP,

PHYSICS
(quantum physics applications)

e.g. graphene modelling,

topological insulators
spin chains

e Intel Xeon E5-2660 v2 CPUs (‘lvy bridge’) at 2.20 GHz 1.6 T (e.g. BJDQR, FEAST) Pthreads, CUDA etc.
e SELL-32-256 format for single-vector algorithm, SELL-8-32 214 *
. X
for blocksize 2 and 4 S 1.2 } Abstract kernel interface, The libraries developed in ESSEX are available under a BSD licence here:
< 1 use alternatively ® https://bitbucket.org/essex/ghost
(Resuts S os | + *https://bitbucket.org/essex/phist
o . . . ﬁ_ 0.6 . ‘builtin’ ®* https://bitbucket.org/essex/physics

o Slgnlflcant speedup of Ja.cobll-Dawdson through blocking § 04 | gpgnsz[gg] —x— | (Fortran+MP1+OpenMP) Latest news and contact information:

in contrast to the conclusion in [1] S 0o 82:222{30% e e http://blogs.fau.de/essex/
e This holds for strong scaling tests on up to 1280 cores. single vector —— e GHOST: moritz.kreutzer@fau.de

. . 0 ‘ ‘
e Small block sizes (2 or 4) are beneficial. 1 2 4 8 16 32 64 128 ® PHIST: jonas.thies@dlr.de

e Further effects of blocking:

— Total communication volume increases (spMVMs).

— Message aggregation may improve the performance.
e See [3] for a detailed discussion.

nodes (with 20 cores each) e PHYSICS: alvermann@physik.uni—-greifswald.de

Figure 3 : Relative performance gains with block size 2. e preprint on the topic available [3]
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Figure 4 : Strong scaling results for block sizes 2 and 4. SISC (submitted) http://elib.dlr.de/89980/, 2014.
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