Numerical modelling of the performance of thermoelectric elements

Knud Zabrocki¹, P. Ziolkowski¹, R. Sottong¹, and Eckhard Müller^{1,2}

Classical thermal energy balance equation for thermoelectric devices

Introduction

- Performance of thermoelectric devices in the framework of continuum theory
- TE effects interference of two irreversible processes: Heat transport and charge carrier transport
- Onsager-de Groot-Callen theory: Thermoelectrics as a kind of "field theory" in non-equilibrium thermodynamics
- Description via differential equations thermal energy balance equation

Thermal energy balance

- Coupling of Fourier's and Ohm's law
- Transport coefficients Onsager relations
- Local energy balance $\varrho_d c \frac{\partial T}{\partial t} + \nabla \cdot \dot{\mathbf{q}} = \mathbf{j} \cdot \mathbf{E}$
- Heat flux: $\dot{\mathbf{q}} = -\kappa_j \nabla T + \mathbf{j} \alpha T$
- Divergence of the heat flux different terms $\nabla \cdot \dot{\mathbf{q}} = \tau \, \mathbf{j} \cdot \nabla T + \mathbf{j} \cdot \mathbf{E} - \frac{\mathbf{j}^2}{\sigma_T} - \nabla \cdot (\kappa_j \nabla T)$
- Representing Peltier, Thomson effects, Joule heating, Fourier heat conduction

Performance of a TE element

- Performance depends on:
 - Temperature-dependent material properties
 - Working/boundary conditions (BC) like junction temperatures and heat fluxes, load resistance, electrical current
 - Contact quality (resistance)
 - Coupling to the surrounding (convection, radiation)
 - Geometry/shape of the TE elements

Numerical modelling of the performance of thermoelectric elements

Numerical methods

- TE phenomena on macroscopic scale (Characteristic time and length scales $\tau \ge 10^{-3}$ s and $l \ge 10^{-3}$ m) – description via non-linear differential equations with state-dependent coefficients
- No analytic solution for heat balance \rightarrow classical numerical methods
 - Finite difference method
 - Finite element method
 - Finite Volume method
- Finite difference method: the simplest and most straightforward interpolation method, best studied and established

Example calculation for a TE element

250

(XI/V1) (XI/V1)

o^a 150

100

 Measured temperature dependence of material data (discontinuous) → fitting or interpolation (continuous)

• Temperature profiles and performance

- Euler method: differential coefficient to difference coefficient, iterative method
- boundary value problem to initial value problem: shooting method
- Red points measurement, red line linear interpolation, blue line – fit, blue dashed line - average

Fig. 4: Temperature dependent Seebeck coefficient;

T (K)

500

400

• Temperature averages for using constant properties model for analytical solutions

$\overline{\boldsymbol{\kappa}} \left[W/(m \cdot K) \right]$	$\overline{\boldsymbol{\varrho}}\left[\Omega\cdot\mathbf{m} ight]$	α [μV/K]	$f = \overline{\alpha}^2 / \overline{\varrho} [W/(m \cdot K^2)]$	zT _m
1.46885	$1.37742 \cdot 10^{-5}$	188.719	$2.58562 \cdot 10^{-3}$	0.921

Tab 1: Example – averaged material properties

600 700 800 900

Finite element method – Performance calculations

FEM simulation

- Real 3D geometry TEG design different layers, variation of thickness, spacing, filling factors
- Fluid-Solid coupling (CFD-FEM), heat exchanger design, coupling to a system
- Combination of temperature dependence of material properties and contact resistances
- Current carrying capacity of the connections
- Shaped, anisotropic, segmented elements

Constant temperature operation

• Constant boundary temperatures \Rightarrow spatial distribution of the heat flux – Integration

Constant heat input operation

- Fixed heat flow at the hot side $\dot{Q}_{\rm h}$ and $T_{\rm c}$
- Constant heat flow ⇒ spatial distribution of the hot side temperature
- Variation of hot side temperature with the current /

Fig. 8: Heat flux hot side (above) – cold side (below).

- For every current point $\vec{j}_Q = \vec{j}_Q(x, y) \Rightarrow \dot{Q} = \iint \vec{j}_Q(x, y) dxdy$
- Efficiency and Power optimization at different electrical currents

Fig. 9: Hot side temperature and cold side heat

• Power output and efficiency optimized at same current

Affiliations

¹Institute of Materials Research, German Aerospace Center (DLR), D-51170 Köln, Germany ²JLU Giessen, Institute of Inorganic and Analytical Chemistry, 35392 Giessen, Germany

Contact

Deutsches Zentrum DLR für Luft- und Raumfahrt

Details in Chapter 6 of "Continuum Theory and Modelling of Thermoelectric Elements", Release date Feb. 2016

German Aerospace Center Institute of Materials Research 51147 Cologne Germany Knud.Zabrocki@dlr.de +49 (0) 2203/601-3359