
Constant temperature operation 

• Constant boundary temperatures ⇒ spatial 
distribution of the heat flux – Integration 
 
 
 
 
 
 
 
 
 
 
 
 

• For every current point  
 

• Efficiency and Power optimization at different 
electrical currents 

Example calculation for a TE element 

• Measured temperature dependence of 
material data (discontinuous) → fitting or 
interpolation (continuous) 

 

 

 

 

 

 

 

 

• Temperature averages for using constant 
properties model for analytical solutions 

 

 

 
 
 

CPM 

𝜂max,cpm = 11.65% 

𝑗opt,η,cpm = 45.94A cm2  

𝜂max = 11.77% 

𝑗opt,𝜂 = 45.50A cm2  

Finite element method – Performance calculations 
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Classical thermal energy balance equation for thermoelectric devices 
Performance of a TE element 

• Performance depends on: 
- Temperature-dependent material 
   properties 
- Working/boundary conditions (BC) like 
  junction temperatures and heat fluxes, 
  load resistance, electrical current 
- Contact quality (resistance) 
- Coupling to the surrounding 
  (convection, radiation) 
- Geometry/shape of the TE elements  

Numerical results compared with CPM 

• Temperature profiles and performance 

Thermal energy balance 

• Coupling of Fourier‘s and Ohm‘s law 

• Transport coefficients - Onsager relations 

• Local energy balance 𝜚𝑑𝑐
𝜕𝑇

𝜕𝑡
+ 𝛻 ∙ 𝐪 = 𝐣 ∙ 𝐄 

• Heat flux: 𝐪 = −𝜅𝑗𝛻𝑇 + 𝒋 𝛼 𝑇 

• Divergence of the heat flux different terms 

𝛻 ∙ 𝐪 = τ 𝐣 ∙ 𝛻𝑇 + 𝐣 ∙ 𝐄 −
𝒋𝟐

𝜎𝑻
− 𝛻 ∙ 𝜅𝑗𝛻𝑇  

• Representing Peltier, Thomson effects, Joule 
heating, Fourier heat conduction  

 

 

 

 

Numerical methods 

• TE phenomena on macroscopic scale 
(Characteristic time and length scales 
𝜏 ≥ 10−3 s and  𝑙 ≥ 10−3 m) – description 
via non-linear differential equations with 
state-dependent coefficients 

• No analytic solution for heat balance → 
classical numerical methods 

 Finite difference method 

 Finite element method 

 Finite Volume method 

• Finite difference method: the simplest and 
most straightforward interpolation 
method, best studied and established 

• Euler method: differential coefficient to 
difference coefficient, iterative method 

• boundary value problem to initial value 
problem: shooting method 
 

 

 

 
 
 
 
 
 
 

Constant heat input operation 

• Fixed heat flow at the hot side 𝑄 h and 𝑇c  

• Constant heat flow ⇒ spatial distribution 
of the hot side temperature 

• Variation of hot side temperature with the 
current I 
 
 
 
 
 
 
 
 
 
 

• Power output and efficiency optimized at 
same current  

Details in Chapter 6 of “Continuum Theory and Modelling  
of Thermoelectric Elements”, Release date Feb. 2016 

Numerical modelling of the performance of thermoelectric elements 

FEM simulation  

• Real 3D geometry - TEG design – different 
layers, variation of thickness, spacing, filling 
factors 

• Fluid-Solid coupling (CFD-FEM), heat 
exchanger design, coupling to a system 

• Combination of temperature dependence of 
material properties and contact resistances 

• Current carrying capacity of the connections 

• Shaped, anisotropic, segmented elements 

 

 

Introduction 

• Performance of thermoelectric devices – in 
the framework of continuum theory 

• TE effects - interference of two irreversible 
processes: Heat transport and charge 
carrier transport 

• Onsager-de Groot-Callen theory: 
Thermoelectrics as a kind of „field theory “ 
in non-equilibrium thermodynamics  

• Description via differential equations -  
thermal energy balance equation  

 

Fig. 3 Thermocouple and thermoelectric leg 
Fig. 1 Influential personalities in macroscopic theory of 
thermoelectricity – Onsager – de Groot – Callen 

Fig. 4: Temperature dependent  Seebeck coefficient; 
Red points – measurement, red line – linear inter-
polation, blue line – fit, blue dashed line - average 
 

Fig. 5: FDM/CPM calculation of the p-type element 

Fig. 9: Hot side temperature and cold side heat 

Fig.7: Two connected  pn-TE couples. 

Fig. 8: Heat flux hot side (above) – cold side (below). 
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Fig. 2 Scientists -  Non-equilibrium Thermodynamics 

𝜿  [W/(m ∙ K)] 𝝔  [Ω ∙ m] 𝛂  μV K  𝒇 = 𝜶 𝟐 𝝔   [W/(m ∙ K2)] 𝒛𝑻𝐦 

1.46885 1.37742 ∙ 10−5 188.719 2.58562 ∙ 10−3 0.921 

Tab 1: Example – averaged material properties 

Affiliations 
1Institute of Materials Research, German Aerospace Center (DLR), D-51170 Köln, Germany 

2JLU Giessen, Institute of Inorganic and Analytical Chemistry, 35392 Giessen, Germany 

 

𝑈 𝑗 → 0 = 74.85mV 

⟹ 𝛼eff = 187.12μV/K 

𝑞 h 𝑗 → 0 + 𝑞 c 𝑗 → 0

2
= 11.79W cm2  

⟹ 𝜅eff = 1.473W/(mK) 

𝑗 ≈ 𝑗opt, 𝑝 

NDSolve (Mathematica) 

CPM 𝑗 ≠ 0 

CPM 𝑗 = 0 

Euler method 

FEM 1D 

CPM 

𝑝max = 2.13W cm2  

𝑗opt,𝑝 = 54.16A cm2  

𝑝max,cpm = 2.07 W cm2  

𝑗opt,η,cpm = 54.80A cm2  

𝑄 h = 30W 

𝐼 = 2A 


