41st European Rotorcraft Forum
Munich

Applying Multi-Objective Variable-Fidelity Optimization Techniques to Industrial Scale Rotors: Blade Designs for CleanSky

1st – 4th Sept 2015

Gunther Wilke
DLR – Germany Aerospace Center
Institute of Aerodynamics and Flow Technology

• Innovation Takes Off

www.cleansky.eu
Motivation

• The goal of GRC is the effective reduction of required fuel and noise emission in contrast to state-of-the-art helicopters

• DLR has been working on two topics:
 – active blade twist blades
 – Improve “passive” blade design – geometric enhancements

→ This presentation focuses on the “passive” approach
Tools for Numerical Optimization
Aerodynamic Models for Optimization

Hover

Forward Flight

Low-Fidelity

Inviscid CFD

BET+Prescribed Wake

High-Fidelity

Viscous CFD

Viscous CFD
Simulation Toolchain

- Preprocessing
 - HOST-Discretization
 - FLOWer-Mesh

- Comprehensive Code
 - HOST
 - Elastics
 - Trim procedure

- CFD Flow Solver
 - FLOWer
 - Porous surface
 - Rotor blades
 - Sound pressure
 - Deformations
 - Loads

- Aero-Acoustic Code
 - APSIM
 - Microphones/sound carpet

GRC ITD – Annual Review Meeting, AHE Albacete (19th to 20th May 2015)
Numerical Optimization Approach
Universal Kriging for single and low fidelity

\[\hat{y}_{LFM}(\bar{x}) = f(\bar{x})_{poly} + \epsilon_{LF}(\bar{x}) \]

Variable Fidelity for cheap high fidelity

\[\hat{y}_{VFM}(\bar{x}) = \rho \hat{y}_{LFM}(\bar{x}) + \epsilon_{HF}(\bar{x}) \]

More details in the ERF 2012/13 papers
Parameterization

- 10 design variables
- Focus laid on robustness
- Limited pitch link loads in hover and forward flight
- Acoustic post-processing
Best FF

- Forward power: -5.9%
- Hover power: +30.7%
- Overflight noise: -3.3 dB

Trade-Off

- Forward power: -2.4%
- Hover power: -2.0%
- Overflight noise: -1.1 dB

Best HV

- Forward power: +8.0%
- Hover power: -6.5%
- Overflight noise: +9.5 dB

GRC ITD – Annual Review Meeting, AHE Albacete (19th to 20th May 2015)
Off Design Analysis
Thrust-FM Polar Hover

![Graph showing Thrust-FM Polar Hover performance](image)

- **Baseline**
- **Best FF**
- **Best HV**
- **Trade-off**

Y-axis: $F_M / F_{M, ref} \cdot 100\%$

X-axis: c_t / σ

Design Point

GRC ITD – Annual Review Meeting, AHE Albacete (19th to 20th May 2015)
Advance Ratio-Power Polar Forward Flight

Absolute

Relative

GRC ITD – Annual Review Meeting, AHE Albacete (19th to 20th May 2015)
Acoustics of Reference Blade

GRC ITD – Annual Review Meeting, AHE Albacete (19th to 20th May 2015)
Acoustics of Selected Blades

Delta SPL

Overflight EPNL

-3.3 dB

-1.1 dB

9.5 dB

GRC ITD – Annual Review Meeting, AHE Albacete (19th to 20th May 2015)
Conclusions
Conclusions

• The speed of the numerical optimization process was significantly improved by using the variable-fidelity approach.

• Additionally going for a multi-point optimization methodology granted insight into many potential designs.

• Nevertheless, there is no free lunch:
 - Forward flight blades perform bad in hover and vice versa.
 - Hover blades are often louder in forward flight.

→ We revealed the cost-effectiveness of each design!